Гидрoгазодинамический расчет трубопровода и сопла Лаваля


Введение

Изучение основ физики жидкости и газа играет важную роль в получении необходимых навыков для решения сложных научных и технических задач, для которых требуется построение физических моделей разнообразных гидрогазодинамических систем.

Объектом изучения являются – трубопроводы и участки трубопроводов по которым движется газ и жидкость, а так-же сопло Ловаля.

Цель работы — формирование систематизированных знаний в области явлений, связанных с закономерностями движения газа при его течении по каналам. Полученные в ходе решения навыки, подготовят будущего специалиста к дальнейшей научной и учебной деятельности.

В данном курсовом проекте строятся задачи которые заключаются в расчете разветвленного и короткого трубопроводов, сопла Лаваля. По результатам расчетов определяются необходимые параметры для нормального функционирования этих систем. По этим параметрам выбирается оптимальный режим работы системы.

Численное решение получено методом установления с использованием уравнений неразрывности потока, Менделеева-Клайперона.

Корпус двигателя

Исходя из полученных данных по давлению газов в камере сгорания, нужно было подобрать соответствующий этим требованиям материал для корпуса. Пиковое значение давления у нас достигает почти 25 бар. Не мудрствуя лукаво и стараясь уйти от применения сложных материалов, где это возможно, решили принять на вооружение стальную трубу ДУ-40 с толщиной стенки в 3 мм. Соответствующая труба была успешно закуплена в первом попавшемся металлопрокате на рынке. К сожалению, склад продукции железячников находился под открытым небом, поэтому труба была несколько ржавая.
Чистка при помощи наждачки и «лепестковой палки» авторства Лёши (передаем привет Доктору Дью) не дала нормального эффекта, да и лень было убивать на это время. Почему бы для этого не попробовать химический метод. Из химикатов, находившихся в пешей доступности, была только уксусная эссенция, лимонная кислота и соль, все закуплено в ближайшем продуктовом. Как назло, не нашлось подходящего тазика, в который можно было бы налить ядрёную смесь и замочить трубу, пришлось соорудить его дендрофекальным методом из других ящиков, используя их в качестве опоры, а между ними сделать ванночку из пленки, оставшейся после дирижабля, которую закрепили канцелярскими зажимами. Положили в этот хрустящий саркофаг трубу и залили ускусной кислотой, а для большего эффекта добавили растворенной в воде лимонки с солью.Реакция началась мгновенно.Довольные собой, мы оставили трубу травиться и с чистой совесью ушли на выходные.

Запах, встретивший нас в понедельник, выедал глаза и нос. Да, зря не накрыли ничем ванну. Запах уксуса, казалось, въелся в стены. Даже открытые настежь окна не спасли, потом еще дня два пришлось проветривать студию, так что не повторяйте наших ошибок: такие вещи лучше делать либо на открытом воздухе, либо в плотно закрытой таре. Тем не менее, результат очистки трубы оказался вполне удовлетворительным: труба очистилась как снаружи, так и изнутри. Имейте в виду, после применения химической очистки нужно хорошо промыть водой и вытереть насухо очищаемый предмет, иначе он на воздухе быстро покроется мутной пленкой. Еще лучше — защитить поверхность от контакта с воздухом при помощи краски, лака или аэрозольного полиуретана. Но это исключительно наши эстетические соображения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

  1. Гриценко, М. В. Гидрогазодинамика. Часть 1. Учебное пособие / М. В. Гриценко, Н. Н. Храмцова, А. В. Гриценко. — Благовещенск: Амурский гос. ун-т, 2008. — 75 с.
  2. Ковальногов,Н. Н. Основы механики жидкости и газа / Н. Н. Ковальногов. — Ульяновск: УлГТУ, 2002,-110 с.
  3. Краснов Н.Ф. Аэродинамика в вопросах и задачах М. Высшая школа 1985г.759c.
  4. Лапшев, Н. Н. Гидравлика: Учебник / Н. Н. Лапшев. — М.: Издательский , 2007. — 272 с.
  5. Часс, С. И. Гидромеханика в примерах и задачах: Учебное пособие / С. И. Часс. — Екатеринбург: Изд-во УГГУ, 2006. — 216 с.

Расчет сопла

Сопло является главным элементом ракетного двигателя (ваш К.О.), так как в зависимости от правильности его расчета можно на одном и том же топливе с тем же каналом получить до +30% тяги.
К расчету сопла мы подошли основательно, подробно о математике его расчета, принципе работы, протекающих процессах, да и вообще, много интересного, можно почитать тут и elib.osu.ru/bitstream/123456789/8572/1/1805_20110824.pdf. А еще на сайте нашелся очень удобный инструмент Rocki-nozzle (на странице листаем вниз и ищем соответствующую ссылку).

Скачиваем программу, подставляем в соответствующие поля расчетные значения ракеты, полученные в Meteor (см. статью) и получаем на выходе профиль сопла. Обрабатываем данные и в SolidWorks рисуем красивое сопло с соблюдением всех размеров.

Дальше должна была быть токарочка, но в этот выпуск она не попадет, так как у моего знакомого токаря ЧПУ-шка отказалась работать и мы не могли к нему попасть. Но к следующей серии все обязательно будет.

Скачать полученную модель можно по ссылке в конце статьи.

Сопло для пескоструйного аппарата. Как найти самое долговечное?

Качественная поверхностная очистка металлических поверхностей концентрированной струёй песка невозможна, если неверно определены параметры сопла – выходной части устройства.

Сопло для пескоструйного аппарата – самая быстроизнашивающийся его деталь, долговечность которой, в зависимости от материала и расхода воздушно-песчаной смеси, не превышает 800…1000 часов, если учесть что оно правильно подобрано.

О выборе, сегодня, и пойдёт речь в нашей статье.

Конструкция типового сопла

Простейшее сопло для пескоструйного аппарата представляет собой полую трубку с резьбовой частью на одном из концов, которая предназначена для присоединения детали к соплодержателю.

Основные геометрические характеристики сменных сопел промышленного производства:

  1. Диаметр присоединительной резьбы (зависит от технической характеристики пескоструйного аппарата, но обычно используется трубная цилиндрическая резьба 2” или 1¼”). Возможен также вариант соединения сопла с соплодержателем при помощи накидной гайки и герметизирующей шайбы. Сопла, изготовленные своими руками, присоединяют к шлангу рабочей установки при помощи обычных хомутов.
  2. Длина детали, которая варьируется в диапазоне 7…23 мм (более короткие используются для очистки менее загрязнённых поверхностей).
  3. Диаметр внутреннего отверстия в его минимальном поперечном сечении. Выпускаются сменные наконечники с диаметрами 6, 8, 10 и 12 мм.
  4. Заходный диаметр сопла, определяемый диаметром присоединительного шланга (он может быть 25 или 32 мм).

Главным параметром рассматриваемой детали является профиль внутреннего отверстия, который определяет потери расхода воздушно-песчаной смеси, скорость её на входе и выходе из сопла, а также величину суммарного гидравлического сопротивления, которое в итоге и определяет долговечность сопла.

Наиболее простым вариантом (пригодным для изготовления своими руками) является сопло с цилиндрическим внутренним отверстием постоянного диаметра. Но для улучшения аэродинамических характеристик на таких деталях иногда изготавливают два конических участка:

  • Входной конфузор, наличие которого позволяет увеличить энергию потока смеси, входящей в сопло;
  • Выходной диффузор, наличие которого способствует увеличению площади поверхности, обрабатывающейся одновременно. Энергия потока при этом падает, поэтому при необходимости более качественной очистки, диффузорный профиль окончания сопла предусматривают не всегда.

Наиболее эффективным профилем внутреннего отверстия для обеспечения минимальных потерь потока является сопло для пескоструйного аппарата с профилем Вентури.

В этом случае отверстие состоит из трёх взаимосвязанных участков, каждый из которых выполняет определённые функции:

  1. На входе сопла с профилем Вентури имеется конфузорное расширение, угол которого, однако, меньше, чем у конфузора обычного сопла (не более 20…22º). Конфузорная часть занимает до 30% от общей длины детали.
  2. Цилиндрическая часть, длиной не более 15%.
  3. Диффузорная часть с достаточно малым углом расширения (7…15º), длина которого определяется размером самого сопла в плане.

С целью снижения гидродинамического сопротивления рабочей смеси, которая движется в канале сопла, все переходы от одной части к следующей выполняются с радиусными закруглениями, величина которых принимается в пределах r = (0,02…0,03) d, где d — диаметр средней, цилиндрической части сопла.

Как выбирать сопло для пескоструйного аппарата?

Сопло с профилем Вентури позволяет увеличить скорость перемещения песчано-воздушной смеси в 2,5…3 раза по сравнению с соплами иной конфигурации внутреннего отверстия.

Современное сопло для пескоструйного аппарата с профилем Вентури способно обеспечить движение частиц на выходе до 700…720 км/ч.

При этом производительность очистки при тех же расходах смеси и давлениях увеличивается примерно в 2 раза.

Ориентировочно выбор параметров сопла можно производить по следующим критериям:

  • По производительности. При требуемой производительности установки до 10…12 м3/ч внутренний диаметр сопла не превышает 8 мм, при 12…22 м3/ч – 10 мм, при более высоких значениях производительности диаметр внутреннего канала должен быть 12 мм;
  • По наибольшему давлению воздуха. Если оно не превышает 5 ат, то диаметр канала может приниматься 6…8 мм, при давлениях до 7 ат – 8…10 мм, при более высоких давлениях – 12 мм;
  • В зависимости от удельного расхода абразива. Если данный параметр не превышает 200…250 кг/ч, то пригодно сопло диаметром 6 мм, при 350…400 кг/ч – 8 мм, при 600…900 кг/ч — 10 мм, в остальных случаях – 12 мм.

Данные рекомендации касаются сопел с цилиндрическими внутренними отверстиями. Для пересчёта приведённых данных на сопло для пескоструйного аппарата с профилем Вентури данные по производительности обработки следует увеличить на 35…50%, по расходу – на 60…75%, а по давлению – на 15…20%.

Важным элементом выбора считают материал сопла. Обычные высокоуглеродистые стали с повышенной абразивной стойкостью (например, стали типа 75 или 65Г) для этих целей подходят мало, поскольку при состоянии закалки на максимальную твёрдость отличаются повышенной чувствительностью к ударным нагрузкам, которые неизбежно возникают в начальный момент подачи в сопло абразивной смеси.

Ещё меньшую стойкость имеют керамические композиции. Например, при изготовлении сопла своими руками часто используют в качестве исходной заготовки отработанную свечу от автомобильного двигателя, удаляя из неё металлический корпус.

При этом не учитывают, что керамика в конструкции свечи рассчитана на работу с газовым потоком, в котором отсутствуют твёрдые абразивные частицы.

Поэтому стойкость таких керамических сопел, изготовленных своими руками, не превышает нескольких часов.

Более работоспособным является вариант с твердосплавными соплами, которые изготавливаются из карбида вольфрама. Поверхностная твёрдость таких изделий достигает 85…90 HRA, при поверхностной прочности по изгибу до 1400…1600 МПа.

Недостаток таких решений – высокая чувствительность карбидов вольфрама к температуре. При повышении температуры до 80…100ºС (что вполне вероятно при длительной пескоструйной обработке) на поверхности сопла могут появиться температурные трещины.

Стойкость сопел из твёрдых сплавов достигает 750…800 ч.

Наилучший вариант – изготовить сопло из карбида бора. При примерно такой же твёрдости и прочности, карбиды бора выгодно отличаются своей высокой устойчивостью от температурных перепадов, поэтому сохраняют свою работоспособность при температурах 600…750ºС.

Небезынтересно сравнить и цены на сопла пескоструйных установок. Промышленные изделия из карбида бора в зависимости от длины, профиля и диаметра внутреннего отверстия можно приобрести за 1200…1600 руб., а твердосплавные сопла – за 2500…7000 руб.

Кавитационный теплогенератор: обзор моделей и изготовление своими руками

Разнообразные способы экономии энергии или получения дарового электричества сохраняют свою популярность.

Благодаря развитию Интернета информация о всевозможных «чудо-изобретениях» становится все доступнее.

Одна конструкция, потеряв популярность, сменяется другой.

Сегодня мы рассмотрим так называемый вихревой кавитационный генератор — устройство, изобретатели которого обещают нам высокоэффективный обогрев помещения, в котором оно установлено.

Что это такое? Данное устройство использует эффект нагрева жидкости при кавитации — специфическом эффекте образования микропузырьков пара в зонах локального снижения давления в жидкости, происходящем либо при вращении крыльчатки насоса, либо при воздействии на жидкость звуковых колебаний. Если Вам когда-либо доводилось пользоваться ультразвуковой ванной, то Вы могли заметить, как ее содержимое ощутимо нагревается.

Реальность использования кавитации для нагревания

В Интернете распространены статьи о вихревых генераторах роторного типа, принцип действия которых состоит в создании областей кавитации при вращении в жидкости крыльчатки специфической формы. Жизнеспособно ли данное решение?

Начнем с теоретических выкладок.

В данном случае мы расходуем электроэнергию на работу электродвигателя (средний КПД — 88%), полученную механическую энергию же частично тратим на трение в уплотнениях кавитационного насоса, частично — на нагрев жидкости вследствие кавитации.

То есть в любом случае в тепло будет преобразована лишь часть потраченной электроэнергии.

Но если вспомнить, что КПД обычного ТЭНа составляет от 95 до 97 процентов, становится понятным, что чуда не будет: гораздо более дорогой и сложный вихревой насос окажется менее эффективен, чем простая нихромовая спираль.

Принцип работы сопла Лаваля:

Ниже на иллюстрации показана работа сопла Лаваля.

По мере движения газа по соплу, его абсолютная температура Т и давление Р снижаются, а скорость V возрастает. Внутренняя энергия газа преобразуется в кинетическую энергию его направленного движения. КПД этого преобразования в некоторых случаях (например, в соплах современных ракетных двигателей) может превышать 70 %. М – число Маха (скорость звука).

На сужающемся, докритическом участке сопла движение газа происходит с дозвуковыми скоростями (М газа достигает звуковой (М = 1). На расширяющемся, закритическом участке, газовый поток движется со сверхзвуковыми скоростями (М > 1).

Суживающая часть сопла называется конфузором, а расширяющая – диффузором. Диффузор по длине всегда больше конфузора. Иногда длина диффузора превышает длину конфузора в 250 раз. Удлинение диффузора способствует увеличению скорости истечения газа из сопла, а соответственно и тяги.

© Фото //www.pexels.com, //pixabay.com, //ru.wikipedia.org/wiki/Сопло_Лаваля

скорость истечения расчет работа истечение из сопла лаваля сопло лаваля принцип работы чертеж купить температура для воздуха своими руками формулы для воды калькулятор википедия размеры

Поиск технологий

Найдено технологий 1

Может быть интересно:

Интенсивное садоводство

Клиновые мельницы

Обеззараживание питьевой воды и сточных вод плазмой

Органические удобрения и технология производства

Рыбные фермы и технология выращивания рыбы

Графеновый аккумулятор и его преимущества

Охранная система РЛД «Редан-125»

Шпренгельные фермы с наклонными стойками

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя: – экономику Второй индустриализации России, – теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России, – организационный механизм осуществления Второй индустриализации России, – справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Сопло лаваля своими руками — Справочник металлиста

Для производства доступных строительных материалов применяется оборудование различного типа, в том числе пеногенератор для пенобетона.

Несмотря на простоту изготовления и невысокую стоимость, технические требования к пенобетонным блокам строгие.

Чтобы добиться высокого качества при производстве этого строительного материала, необходимо строго соблюдать все технологические нормы.

Назначение пеногенератора

На текущий момент пенобетон востребован в индивидуальном строительстве как доступный и качественный материал. Это объясняется его высокими эксплуатационными характеристиками.

Из пенобетона возводят малоэтажные жилые дома, гаражи, дачные домики и различные хозяйственные постройки.

Пеноблоки не горят и не подвержены усадке, обладают достаточной стойкостью к любым атмосферным воздействиям.

В зимний период здания из пенобетона хорошо сохраняют тепло, летом в таких помещениях не жарко. Пенобетон можно производить своими руками, используя самодельный пеногенератор.

:

Практика последних лет показывает, что все больше людей стремятся построить себе дом или гараж собственными силами. Такой подход получил распространение благодаря техническим возможностям.

Оборудование для производства пенобетона можно приобрести по доступной цене или изготовить самостоятельно.

Одним из основных элементов в составе установки считается пеногенератор. Это устройство используется, чтобы обеспечить насыщение бетонного блока пеной, благодаря чему блок приобретает свои характеристики.

Сегодня на рынке строительного оборудования можно найти и купить подходящий по мощности пеногенератор.

Однако можно без существенных финансовых затрат изготовить пеногенератор для пенобетона своими руками, что позволит сократить затраты на строительство.

Качество пены, которая образуется в самодельных пеногенераторах, точно такое же, как и в заводских.

Познакомившись с принципом действия такого агрегата, можно самостоятельно начертить чертежи и приступить к изготовлению.

Пеногенератор состоит из следующих элементов:

  • запорная и регулировочная аппаратура;
  • камера для формирования смеси;
  • сопло.

Конкретная конструкция генератора пены может претерпевать изменения, но принцип действия остается одинаковым.

Принцип действия

Основная функция пеногенератора заключается в том, чтобы обеспечить подачу пены в приготовленный заранее песчано-цементный раствор.

Для производства пенобетона используется обыкновенная бетономешалка. В ней замешивают бетон для заливки фундаментов и стен или раствор для кирпичной кладки.

Когда в процессе перемешивания раствора в него попадает определенное количество пены, то обыкновенный бетон превращается в пенобетон.

О преимуществах и недостатках пенобетона известно всем специалистам. Сегодня этот строительный материал можно приготовить непосредственно на том месте, где возводится дом, гараж или другой объект.

Структура пеногенератора

Приступая к изготовлению пеногенератора своими руками, необходимо оптимизировать все попавшиеся на глаза чертежи и описания.

Дело в том, что многие специалисты, познакомившись с принципом действия пеногенератора, тут же применяют полученные знания, воплотив их в реальность.

Схемы и чертежи:

Наглядную демонстрацию работы пеногенератора можно увидеть на любой автомобильной мойке.

Пена при перемешивании заполняет определенный объем бетонного блока и тем самым уменьшает его исходную плотность.

Простейший пеногенератор можно собрать из следующих элементов:

  • патрубок подачи пенообразующего раствора;
  • патрубок подачи сжатого воздуха;
  • камера смешивания;
  • пенопатрон.

Пенообразователь заводского изготовления всегда имеется на стеллажах в магазинах строительных материалов.

Если такой возможности нет, то эмульсию можно приготовить, смешав живичную канифоль, каустическую соду и костный столярный клей. Процесс приготовления не сложный, но требующий аккуратности.

После того как самопальный пенообразователь будет готов, нужно проверить его качество. Пена должна обладать достаточной плотностью и стойкостью.

Сборка и подключение

Основными элементами пеногенератора для производства пенобетона являются камера смешивания и пенопатрон. В этом контексте важно подчеркнуть, что за этими терминами кроются обыкновенные и хорошо знакомые мастерам элементы.

Камера смешивания представляет собой обыкновенную трубу. Диаметр трубы выбирается в зависимости от мощности будущего генератора. К трубе привариваются два патрубка.

:

Первый – с торца, предназначенный для подачи воздуха, второй – посередине трубы под углом 90 градусов. Через него подается раствор пенообразователя. На каждом патрубке необходимо установить запорный вентиль.

На пеногенераторах для пенобетона заводского изготовления устанавливается по два вентиля – запорный и регулировочный.

Практика последних лет показывает, что при небольших объемах производства, когда нужно изготовить пеноблоки для возведения гаража или дачного домика, вполне достаточно одного запорного вентиля.

Ко второму торцу камеры смешивания приваривается патрубок, который выполняет функции пенопатрона. При возможности внутреннюю поверхность патрубка обрабатывают в форме воронки.

Это делается для уменьшения скорости потока смеси пенообразователя и воздуха, чтобы обеспечить образование пены.

Некоторые нюансы

Когда выполняется соединение камеры смешивания и пенопатрона, между ними фиксируется элемент, который носит название сопло Лаваля, или другое устройство – жиклер.

Эти элементы предназначены, чтобы увеличить скорость протекания смеси при переходе из камеры в пенопатрон. Именно в пенопатроне происходит окончательное формирование пены.

Чтобы процесс протекал более эффективно, поток пенообразователя «разбивается» о специальный фильтр.

В самодельных пеногенераторах в качестве такого фильтра используют кухонные металлические сеточки, которые продаются в каждом хозяйственном магазине.

Соорудить пеногенератор своими руками для производства пенобетона задача не сложная. Здесь главное представлять себе принцип действия генератора.

:

Технически более сложная задача – правильно подключить пеногенератор к основному оборудованию.

В настоящее время конструкции бетономешалок, которые применяются для производства блоков, можно встретить самые разные.

Перед тем как собирать пеногенератор, необходимо определить все установочные элементы, которые используются при соединении шлангов и труб.

Сопло для пескоструя: правила выбора и изготовление своими руками

Сопло, которое используется для оснащения пескоструйного аппарата, является важнейшим элементом конструкции такого устройства.

Только правильно подобранное сопло позволит вам наиболее эффективно использовать пескоструйный аппарат по его прямому назначению: для очистки различных поверхностей от загрязнений, старых покрытий, следов коррозии, их обезжиривания и подготовке к дальнейшей обработке.

Для каждого применения можно подобрать сопло определенного диаметра, в зависимости от фракции используемого песка

Задачи, которые решает сопло пескоструйное, заключаются в сжатии и разгоне до требуемой скорости смеси, состоящей из воздуха и абразивного материала, а также в формировании рабочего пятна и его насыщении абразивом, воздействующим на поверхность обрабатываемого изделия.

В зависимости от размеров поверхности, которую необходимо подвергнуть пескоструйной обработке, в соплах могут быть выполнены отверстия различных типов.

Так, для обработки узких поверхностей применяют сопла с одинаковым диаметром по всей длине, а для очистки поверхностей большой площади используют изделия, отверстия в которых имеют больший диаметр на входе и выходе (тип «Вентури», разработанный в середине прошлого века).

Сущность пескоструйной обработки

Пескоструйная обработка предполагает воздействие на различные поверхности абразивным материалом. В качестве последнего используются песок, дробь, карбид кремния, мелкие шарики из стекла и т.д.

Пескоструйная обработка – это механическое воздействие на поверхность мелких твердых частиц

Перед началом обработки абразив помещают в герметичный бункер. По основному шлангу аппарата под большим давлением подается воздух, поступающий от отдельного компрессора.

Проходя мимо отверстия заборного рукава, поток воздуха создает в нем вакуум, что и способствует всасыванию в основной шланг абразива.

Уже смешанный с абразивом воздух поступает к пистолету, основным элементом которого является сопло пескоструйное, через которое абразивная смесь подается на обрабатываемую поверхность.

Схема участка пескоструйной обработки

Как уже говорилось выше, для выполнения пескоструйной обработки могут использоваться различные типы абразивных материалов. Выбор здесь зависит от типа поверхности, которую необходимо очистить.

Так, обработка с использованием песка эффективна в тех случаях, когда необходимо удалить слой старой краски с бетонной поверхности, очистить кирпичные стены от остатков цемента, подготовить металлические детали к дальнейшей покраске.

Такие абразивы, как пластик или пшеничный крахмал, успешно применяют в судостроительной, автомобильной и авиастроительной отраслях, с их помощью эффективно удаляют старые покрытия с композиционных материалов.

Конструктивные особенности сопла для пескоструйного аппарата

Основными параметрами сопла, устанавливаемого на пескоструйный аппарат, являются:

  • диаметр и тип отверстия;
  • длина;
  • материал изготовления.

Абразивоструйные сопла различных конфигураций

Диаметр отверстия в сопле, которое фиксируется на пескоструйном аппарате посредством специального соплодержателя, выбирается в зависимости от того, какой производительностью должно обладать устройство.

Производительность любого пескоструйного аппарата – как серийного, так и сделанного своими руками – зависит от мощности струи или объема воздуха, который в состоянии пропускать сопло в единицу времени.

Мощность струи, которую формирует сопло, прямо пропорциональна объему воздуха, который проходит через него в единицу времени. Соответственно, чтобы увеличить мощность пескоструйного аппарата, необходимо сделать в его сопле отверстие большего диаметра.

Если сопло, диаметр которого соответствует 6 мм (1/4 дюйма), имеет мощность, равную 100%, то изделия с отверстиями больших диаметров будут отличаться следующей величиной данного параметра:

  • 8 мм (5/16 дюйма) – 157%;
  • 9,5 мм (3/8 дюйма) – 220%;
  • 11 мм (7/16 дюйма) – 320%;
  • 12,5 мм (1/2 дюйма) – 400%.

Описание сопла Лаваля:

Сопло Лаваля — газовый канал особого профиля, разгоняющий проходящий по нему газовый поток до сверхзвуковых скоростей. Сопло представляет собой канал, сужающийся в середине. В простейшем случае такое сопло может состоять из пары усечённых конусов, сопряжённых узкими концами.

Феномен ускорения газа до сверхзвуковых скоростей в сопле Лаваля был обнаружен в конце XIX в. экспериментальным путём. Сопло было впервые предложено в 1890 г. шведским изобретателем Густафом де Лавалем для паровых турбин, а потому и названо по имени его изобретателя. Затем в 1913 г. Р. Годдардом подана заявка на изобретение на применение сопла Лаваля в двухступенчатой твердотопливной ракете . В настоящее время сопло Лаваля широко используется на некоторых типах паровых турбин, в ракетных двигателях и сверхзвуковых реактивных авиационных двигателях .

Позже это явление – ускорение газа до сверхзвуковых скоростей нашло теоретическое объяснение в рамках газовой динамики и соответствующих газодинамических расчетов.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]