Плазменная резка металла — необходимая технология для многих работ

Внедрение плазменной обработки в промышленность ознаменовало технологический прорыв и переход на качественно новый уровень производства. Область применения полезных свойств плазмы очень обширна. Прежде всего это производство приборов электроники и полупроводниковых приборов. Без плазмохимического травления свет вряд ли увидели бы современные производительные персональные компьютеры. Но это далеко не все.

Ионно-плазменная обработка применяется также в оптике и машиностроении для полировки изделий, нанесения защитных покрытий, диффузионного насыщения поверхности металлов и сплавов, а также для сварки и раскроя листовой стали. В данной работе основное внимание уделяется именно технологиям сварки и резки с использованием плазмы.

Общие положения

Из школьных уроков по физике каждый знает, что вещество может существовать в четырех состояниях: твердое, жидкое, газ, а также плазма. Больше всего вопросов возникает при попытке представить последнее состояние. А на самом деле все не так сложно. Плазма – это тоже газ, только его молекулы, что называется, ионизированы (то есть оторваны от электронов). Такое состояние может быть достигнуто разными способами: в результате воздействия высоких температур, а также как результат бомбардировки электронами атомов газа в вакууме.

Такую плазму принято называть низкотемпературной. Такая физика процесса используется при осуществлении плазменного напыления (травления, насыщения) в вакууме. Помещая частицы плазмы в магнитное поле, им можно придавать направленное движение. Как показала практика, такая обработка более эффективна по ряду параметров классических операций в технологии машиностроения (насыщение в порошковых средах, газопламенная резка, поливание при помощи пасты на основе оксида хрома и так далее).

Виды плазменной обработки

В настоящее время плазма активно используется практически во всех отраслях промышленности и народного хозяйства: медицина, машиностроение, приборостроение, строительство, наука и так далее.

Первопроходцем в применении плазменных технологий было приборостроение. Промышленное применение плазменной обработки началось с использования свойств ионизированного газа для распыления всевозможных материалов и нанесения их на подкладки, а также для травления каналов с целью получения микросхем. В зависимости от некоторых особенностей устройства технологических установок различают плазмохимическое травление, ионно-химическое, а также ионно-лучевое.

Освоение плазмы – это невероятно ценный вклад в развитие технологий и улучшение, без преувеличения, качества жизни всего человечества. С течением времени область применения ионов газа расширялась. И сегодня плазменная обработка (в том или ином виде) применяется для создания материалов с особыми свойствами (жаростойкость, твердость поверхности, коррозионная стойкость и так далее), для эффективной резки по металлу, для сваривания, для полирования поверхностей и устранения микронеровностей.

Этим списком не ограничивается применение технологий, основанных на воздействии плазмы на обрабатываемую поверхность. В настоящее время активно развиваются средства и методы плазменного напыления с использованием различных материалов и режимов обработки с целью достижения максимальных показателей механических и физических свойств.

Принцип работы

Для плазменной резки металла применяется воздействие струёй плазмы на заготовку. Плазма — это поток ионизированного газа, разогретого до температуры в тысячи градусов, который обладает электропроводностью и движется с большой скоростью. Формирование плазменной дуги из электрической производится аппаратом плазморез. Принцип работы плазмореза и этапы технологического процесса резки:

  • Формируется дежурная электрическая дуга, которая зажигается между электродом плазмореза и его соплом или обрабатываемым металлом.
  • После формирования дежурной дуги в камеру подаётся сжатый газ. Он расширяется в объёме и разогревается до температуры 20000 °C.
  • Электрическая дуга ионизирует газ, он становится проводником электричества и превращается в струю плазмы. Эта струя разогревает металл в зоне обработки, расплавляет его и производит резку.

Для металлов и неметаллических материалов применяются разные принципы газоплазменной резки. Имеются два способа обработки материалов:

  • Дуга горит между плазмотроном и изделием. Так работает резак прямого действия. Изделие при этом должно быть токопроводящим. Если требуется разрезать неметаллические изделия, применяется косвенный метод.
  • Дуга зажигается в самом плазмотроне между электродом и соплом. Электрод является катодом, а на сопло подаётся положительный потенциал.

Сущность плазменной сварки

В отличие от установок ионно-плазменного насыщения и напыления, в данном случае плазменная обработка осуществляется с применением высокотемпературной плазмы. Эффективность данного метода более высокая, чем при применении традиционных методов сварки (газопламенная, электродуговая, сварка под флюсом и так далее). В качестве рабочей газовой смеси используется, как правило, обычный атмосферный воздух под давлением. Таким образом, данная методика характеризуется отсутствием затрат на расходные газы.

Добавить ссылку на обсуждение статьи на форуме

РадиоКот >Лаборатория >Радиолюбительские технологии >

Теги статьи:Добавить тег

Плазморез

Автор: pnp_machinist, Опубликовано 30.10.2016 Создано при помощи КотоРед. Участник Конкурса «Поздравь Кота по-человечески 2016!»

Простой аппарат плазменной резки.

Значение аппарата плазменной резки для народного хозяйства трудно переоценить. Так например одна только экономия металла при раскрое составляет 10-15%. Не говоря уже о возможности вырезать отверстия и детали различной формы в листовом металле. Появление на рынке сварочных инверторов и расходных материалов для плазмотронов сделало этот способ обработки металла доступным для широких масс населения. В нашем случае в качестве рабочей среды плазмы используется осушенный атмосферный воздух давлением 3.5 – 4 Атм. Плазматрон CUT-40 как один из самых доступных . И инвертор сварочного тока выходным напряжением 100-140 вольт, 10-40 А. Этого вполне хватает для резки металла толщиной 0,5 – 6 мм. Исходя из данных — сила тока для реза 1 мм. толщины металла должна быть примерно 6 А

Теория.

Как видно на условном изображения горелки, атмосферный воздух одновременно является рабочей средой для образования плазмы и охлаждает элементы горелки. В первый момент дуга разжигается высоковольтным разрядом между электродом и соплом при условии контакта последнего с анодом т.е. металлом. Далее образовавшаяся плазма выдувается потоком воздуха. Для поддержания стабильной дуги необходимо выдерживать зазор между соплом горелки и металлом около 1 мм. , что весьма трудно. Для этого предлагаются специальные насадки. Но как утверждают специалисты они только мешают. Я полностью разделяю их мнение и поэтому просто веду без нажима соплом горелки по заготовке. Замечено при недостаточном токе сопло «прилипает» к металлу. О успешном процессе резки можно судить по видимым искрам с обратной стороны металла. По окончании резки не следует отводить горелку, лучше прервать процесс снятием напряжения. Так продлевается срок службы электрода со вставкой из гафния .

Инвертор

Для силовой части хорошо подходит схема инвертора AVT-200. Данный инвертор уже неоднократно повторялся и хорошо известен в сети Интернет. Оригинал статьи автора доступен в архиве AVT-200.rar. Изменения коснулись узла формирования пилообразного напряжения на токовом входе компаратора и цепей задания тока. Изменена печатная плата. Узел задания тока питается стабильным напряжением 15 В, что улучшает повторяемость. Для снижения уровня помех в цепях токового компаратора установлен резистор R90. Большая индуктивность выходного дросселя позволяет упростить схему формирования «пилы». В остальном схема мало отличается от оригинала. Для токового шунта необходимо использовать манганиновую проволоку. В моём случае при диаметре 0.9 мм длинна шунта 20 мм. Отдельно отмечу в схеме отсутствует узел защиты от превышения тока и К.З. в нагрузке. Разумеется такие узлы необходимы. Но короткое замыкание в правильно собранной горелке CUT-40 не возможно. Если конечно сопло совсем расплавится и останется только электрод.

Осциллятор

В большинстве случаев для успешного розжига плазмы хватает высоковольтного разряда напряжением 20-22 кВ. постоянного тока. Схема с искровым разрядником самая простая в реализации . Для снижения требований к повышающему трансформатору используется умножитель напряжения . Разрядник изготовлен из контактов реле , зазор 1 – 1.5 мм. Высоковольтный трансформатор намотан на ферритовом сердечнике диаметром 8 мм. длинной 80 мм Первичная обмотка 7-8 витков проводом МГТФ-0,35. Вторичная медным проводом ПЭВ- 2 диаметром 1,5 мм. Пропитан эпоксидной смолой. Между обмоточками изоляция обязательна. Накопительный конденсатора взят из стартёра времён СССР для лампы дневного света мощностью 80 Вт. Как оказалось другие конденсаторы — 10n 6,3 kV. сгорают после 3-й попытки розжига.

Схема управления.

Для работы реализована простая последовательность управления. При нажатии кнопки оператора S3 последовательно происходит 1- Подача воздуха. 2- Пауза 0.5-1 сек. (это время необходимо для продувки плазмотрона) 3- Включение инвертора. 4- Включение осциллятора на 2 сек. При размыкании кнопки выключается инвертор и с задержкой 3-4 сек. снимается напряжение с воздушного клапана. Этого времени достаточно для остывания горелки.

В исходном состоянии все реле обесточены и копка оператора S3 отжата. При замыкании S3 сработает реле REL 2 и своими контактами замкнёт базовые цепи транзисторов Т1, Т3, Т4, Т6. к общему проводу. Причём напряжение на базе транзисторе Т1 появится с небольшой задержкой обусловленной RC цепочкой R4,C1. Стабилитрон в цепи коллектора Т1 определяет пороговое напряжение при открытии транзистора, что также является своеобразной защитой от помех в цепях управления. Далее открывается транзистор Т2 и срабатывает реле включения инвертора. При нажатой кнопке S3 транзистор Т3 закрыт и на работу схемы не влияет. Одновременно с этим подаётся напряжение на схему включения осциллятора. Положительное напряжение с коллектора транзистора Т1 через стабилитрон ZD4 попадает на базу Т8 , открывшийся транзистор включает реле подачи напряжения на осциллятор. По истечении времени заряда конденсатора С5 транзистор Т7 закрывает транзистор Т8. Так время работы осциллятора ограничено 1-2 секундами. Что вполне достаточно для уверенного розжига дуги в плазмотроне. Реализация временных задержек для осциллятора и воздушного клапана реализованы по сходным схемам. При размыкании кнопки S3 снимается напряжение с обмотки реле REL 2 . Далее положительное напряжение через резистор R16 открывает транзистор Т3 который блокирует транзистор Т2 и реле управления инвертором обесточится. Одновременно с этим конденсатор С4 разряжается через резистор R23 и переход база эмиттер. Таким образом воздушный клапан выключается с необходимой задержкой. При повторном нажатии кнопки S3 процесс повторяется.

Детали.

Как оказалось самая большая проблема — это перекрыть поток воздуха. Для этих целей установлен клапан КИПиА времён СССР . Не смотря на надпись 1 атм. ДУ 2.5мм. Он с честью перекрывает 4 атм. Фильтр для очистки воздуха 1/4″ Intrtool PT1412 выбран как самый доступный. Трансформатор инвертора на кольце CF138-T6325-C первичная и вторичная обмотки намотаны в два провода диаметром 1.2 мм. Выходной дроссель на кольце из альсифера 46х25х18 проводом 1.5 мм до заполнения в один слой. Выбран именно этот дроссель т.к. в моём случае нет необходимости использовать токи более 20 А. Высоковольтный трансформатор намотан проводом 1.5мм из этих же соображений. Трансформатор осциллятора намотан на сердечнике ETD-39 проводом ПЭВ-2 -0.45 послойная и между обмотками изоляция обязательна.

Проверка инвертора.

На время проверки силовой части осциллятор и схема управления должны быть отключены. Разумеется контакты реле блокировки инвертора нужно замкнуть. Перед включением необходимо проверить правильность монтажа. Первым проверяется источник питания , предусмотрена возможность его отдельного подключения через разъём JMP2. Затем необходимо убедится в наличии и правильности формы импульсов частотой 50 кГц. на затворах силовых транзисторов инвертора. Время «спада» не должно превышать 0,25us. Следующим шагом проверяется работа инвертора на эквивалент нагрузки. Я использовал два водяных ТЭНа по 5 кВт. соединённых параллельно. Максимальный ток устанавливается резистором R78. Минимальный ток при данной схеме не нуждается в регулировке. Его значение близко к 10 А. В конце статьи в файлах SDS00003 и SDS00004 приведены формы напряжения на коллекторе транзистора T8 инвертора при отсутствии тока и нагрузке 10 А.

Во время проверки ток в цепи нагрузки контролируется стрелочным амперметром с измерительным шунтом. Розжиг дуги и работа осциллятора проверяется импровизированным имитатором. Две медные проволоки диаметром 0.8 -1 мм. подключаются к аноду и катоду при этом обеспечивается зазор 2-3 мм. Электрическая дуга должна надёжно разжигаться с первого включения осциллятора. При этом медь естественно сгорает, а дуга тухнет.

Далее — пробный рез не толстого металла. Окрашенный желательно не использовать. Регулятором расположенном на фильтре установить давление воздуха 4 атм. Продуть резак воздухом 3-4 сек. для этого принудительно открыть воздушный клапан нажатием кнопки S2. Прикоснувшись соплом к заготовке нажать кнопку на ручке резака. При этом на 2 сек. включается осциллятор. И образовавшимся факелом плазмы резать, без особого нажима ведя по намеченной линии соплом.

Не стоит пренебрегать элементарными правилами ТБ. Величина выходного напряжения и тока могут быть опасны для жизни! Защита органов зрения обязательна!

Традиционно обсуждается на форуме все не написанное здесь.

Файлы:

Оригинал статьи «AVT» Платы формат LAY6 схема силовой части

Все вопросы в Форум.

Как вам эта статья? Заработало ли это устройство у вас?
9903
2
01

Преимущества плазменной сварки

По сравнению с традиционными видами сварки использование плазменного сварочного аппарата более безопасно. Причина вполне ясна – применение в качестве рабочего газа атмосферного кислорода под давлением. В настоящее время безопасности на производстве уделяется очень пристальное внимание со стороны владельцев бизнеса, руководителей и надзорных органов.

Еще одно очень важное преимущество – высокое качество сварного шва (минимум наплывов, непроваров и других дефектов). Хотя для того чтобы научиться умело пользоваться плазменным сварочным аппаратом, необходимы долгие месяцы практики. Только в таком случае сварной шов и соединения в целом будут соответствовать высоким стандартам.

Данная технология имеет целый ряд и других преимуществ. Среди них: высокая скорость процесса сваривания (производительность возрастает), небольшой расход энергоресурсов (электроэнергия), высокая точность соединения, отсутствие деформаций и короблений.

Что представляет собой процесс плазменной резки металла?

Плазма – токопроводящий ионизированный газ высокой температуры. Образуется струя в специальном устройстве – плазмотроне. Он состоит из таких основных элементов:

  1. Электрод (катод) – оснащен вставкой из материала с высокой термоэлектронной эмиссией (гафний, цирконий), которая выгорает в процессе эксплуатации и при выработке более 2 мм требует замены.
  2. Механизм закрутки газового потока.
  3. Сопло – как правило, изолированное от катода специальной втулкой.
  4. Кожух – защищает внутренние компоненты от брызг расплавленного металла и металлической пыли.

Источник питания воздушно-плазменной резки имеет 2 провода – анод (с положительным зарядом) и катод (с отрицательным зарядом). «Плюсовой» провод подсоединяется к разрезаемому металлопрокату, «минусовой» – к электроду.

В начале процесса плазменной резки металла поджигается дежурная дуга между катодом и наконечником, которая выдувается из сопла, а при касании к обрабатываемому изделию образует уже режущую дугу.

При заполнении формирующего канала в плазмотроне столбом дуги в дуговую камеру под давлением в несколько атмосфер начинает подаваться плазмообразующий газ, который подвергается нагреву и ионизации, что способствует его увеличению в объеме. Это ведет к его истеканию из сопла с большой скоростью (до 3 км/сек.), а температура дуги в этот момент может достигать от 5000 до 30000 °C.

Небольшое отверстие в сопле сужает дугу, что способствует ее направленному воздействию в определенную точку на металле, который практически мгновенно нагревается до температуры плавления и выдувается из зоны реза.

После прохождения плазмотроном по заданному контуру получается заготовка необходимых размеров и формы с ровными кромками и минимальным количеством окалины на них.

Оборудование для плазменной резки

Сам процесс очень чувствителен к используемым источникам тока. Поэтому допускается применять лишь очень качественные и надежные трансформаторы, демонстрирующие постоянство выдаваемого напряжения. Используются понижающие трансформаторы, которые преобразовывают высокое напряжение на входе в низкое на выходе. Стоимость подобного оборудования в разы меньше стоимости традиционных преобразователей для электродуговой сварки. К тому же они более экономичны.

Оборудование для плазменной резки характеризуется простотой использования. Поэтому при наличии хотя бы минимального опыта и навыков можно производить все сварочные работы самостоятельно.

Плазменная резка

Плазменной резкой называется процесс, при котором металл разрезается на составные части направленным потоком высокотемпературной плазмы. Данная технология обеспечивает идеально ровную линию разреза. После плазменного резака необходимость в дополнительной обработке контура изделий (будь то листовой материал или трубная продукция) отпадает.

Процесс может осуществляться как при помощи ручного резака, так и с использованием станка плазменной резки для раскроя листового стального проката. Плазма образуется при воздействии на поток рабочего газа электрической дуги. В результате значительного локального нагрева происходит ионизация (отрыв отрицательно заряженных электронов от положительно заряженных атомов).

Область применения плазменной резки

Струя высокотемпературной плазмы обладает очень большой энергией. Температура ее настолько велика, что она с легкостью буквально испаряет многие металлы и сплавы. В основном данная технология используется для нарезания стальных листов, листов из алюминия, бронзы, латуни и даже титана. Причем толщина листа может быть самой разной. На качестве линии среза это не отразится – она будет идеально гладкой и ровной, без потеков.

Однако следует учесть, что для получения качественного и ровного среза при работе с толстостенными материалом необходимо использовать станок плазменной резки. Мощности ручного резака будет недостаточно для раскроя металла толщиной от 5 до 30 миллиметров.

Оборудование для резки плазмой

Для резки металла плазмой выпускаются аппараты промышленного и бытового назначения. Все агрегаты для резки плазмой имеют в своём составе:

  • источник питания;
  • плазмотрон;
  • компрессор для нагнетания сжатого газа;
  • кабели и шланги, служащие для соединения элементов оборудования.

Источник питания может представлять собой инвертор или трансформатор. Инверторные агрегаты лёгкие, экономичные, обладают высоким коэффициентом полезного действия. Их часто применяют в небольших производствах. Имеют ограничение по силе тока — 70 А, способны резать материал только небольшой толщины до 30 мм.
Трансформаторные устройства более мощные, имеют больший вес и размеры. Они более устойчивы к перепадам напряжений, способны к долгой непрерывной работе и часто используются в станках с ЧПУ. Оборудование с системой водяного охлаждения способно резать металл толщиной до 100 мм. Источники питания для резки с применением кислорода имеют силу тока в диапазоне 100—400 А. При использовании азота, как плазмообразующего газа, этот диапазон увеличивается до 600 А.

Плазмотрон — это основной узел всех установок. В его состав входит:

  • внутренний электрод;
  • рабочее сопло;
  • изолирующий корпус с охлаждением;
  • устройство подачи плазмообразующего вещества.

В зависимости от условий обработки применяют разные газы для плазменной резки. Для сталей и сплавов применяют кислород и воздух. Воздушно-плазменная резка используется для обработки низколегированных сталей. При обработке цветных металлов плазмообразующими газами могут быть аргон, азот, водород. Это обусловлено тем, что в среде кислорода цветные металлы начинают окисляться. Смесь аргона с водородом чаще используется для резки нержавеющей стали и алюминия.

Газовая резка или плазменная?

Какому виду резки и раскроя металла отдать предпочтение? Что лучше: кислородно-газовая резка или же технология плазменной резки? Второй вариант, пожалуй, является более универсальным, так как подходит практически для любого материала (даже склонного к окислению при повышенных температурах). Кроме того, плазменная резка осуществляется с использованием обычного атмосферного воздуха, а значит, не требует приобретения дорогостоящих расходных материалов. Да и линия разреза получается идеально ровной и не требует доработки. Все это в комплексе значительно снижает себестоимость изделия и делает продукцию более конкурентоспособной.

Недостатки

Как и достоинства, недостатки лучше продемонстрировать в сравнении с газовой резкой. К минусам плазменной резки относятся:

  1. Более сложное и громоздкое оборудование. Так называемый плазмотрон, даже в портативном (ручном) исполнении, представляет собой довольно большой блок, и он служит только промежуточным звеном между системой подачи газа и резаком с соплом.
  2. Относительно небольшая толщина реза. Этот параметр напрямую зависит от величины рабочего тока. У портативных аппаратов максимальная толщина стальной детали в среднем равна 20-25 мм, у промышленных — 80-100 мм.
  3. Ограниченная продолжительность непрерывной работы. У плазмотронов есть такая характеристика как «ПВ», которая измеряемая в процентах при максимальном токе. И если ПВ равен 80%, это означает, что при максимальном токе аппарат может работать 8 минут из 10, а остальное время остывать.

Материалы, подвергаемые плазменной резке

Следует учитывать тот факт, что максимально допустимая толщина обрабатываемого металла или сплава зависит от самого материала или его марки. Опираясь на многолетний производственный опыт и опыт лабораторных исследований, специалисты дают следующие рекомендации по толщине обрабатываемых материалов: чугун – не более девяти сантиметров, сталь (вне зависимости от химического состава и наличия легирующих элементов) – не более пяти сантиметров, медь и сплавы на ее основе – не более восьми сантиметров, алюминий и его сплавы – не более 12 сантиметров.

Все перечисленные значения характерны для условий ручной обработки. Примером такого агрегата отечественного производства может служить плазменный аппарат «Горыныч». Он гораздо дешевле зарубежных аналогов, при этом ничуть не уступает, а возможно, даже и превосходит их по качеству. На рынке представлен широкий модельный ряд аппаратов данного производителя, которые предназначаются для выполнения различных работ (бытовые сварочные работы, резка и сварка металлов различной толщины включительно). Листы большей толщины могут обрабатываться исключительно на станочном оборудовании большой мощности.

Существующие способы плазменной резки

Все существующие способы плазменной резки можно разделить на струйные и дуговые. Причем совершенно не имеет значения, используется ли ручной резак или же станок плазменной резки и раскроя листового материала с ЧПУ. В первом случае все необходимые условия для ионизации газа реализованы в самом резаке. Такой аппарат может обрабатывать практически любые материалы (металлы и неметаллы). Во втором случае обрабатываемый материал должен обладать электропроводностью (в противном случае не будет возникать электрическая дуга и происходить ионизация газа).

Помимо различий в способе образования плазмы, плазменная обработка может также классифицироваться по технологическим особенностям резания на простую (без использования вспомогательных веществ), на обработку с водой и обработку в среде защитного газа. Последние два способа позволяют значительно увеличить скорость резания и при этом не опасаться окисления металла.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]