Формоизменяющие операции листовой штамповки. Вытяжка


Как выглядит защита диска на шинах

Чтобы понять, защищает ли шина обод диска от повреждений, смотрят на бортовую зону. Если на ней есть выступающий поясок или она уплотнена, удары по касательной, скорее всего, не скажутся на целостности колёсного диска. Как правило, производители предусматривают защиту диска в низкопрофильных шинах. Сегодня к ним относят покрышки с профилем (или серией) меньше 55. Авторезина с профилем от 55 сама по себе выпирает за вертикальную плоскость диска, чем оберегает его от грубых воздействий – дополнительные элементы в бортовой зоне просто не нужны.

Бортировка колес

Сегодня владельцы автомобилей привыкли обращаться в шиномонтаж в случае появления проблем с колесами. Но такие услуги можно найти только в больших городах, и существует немало «глухих» мест, где трудно найти мастерскую по ремонту шин. В такой ситуации запасное колесо может выручить водителя, но иногда проблемы случаются сразу с несколькими покрышками. Поэтому автовладелец должен знать, как выполняется бортировка колес своими руками. Тем более, что многие водители не доверяют слесарям шиномонтажных сервисов, и предпочитают выполнять подобные работы самостоятельно.

Маркировка FR на шине что это?

На боковине каждой шины нанесено немыслимое количество букв и цифр, которые для рядового автолюбителя не всегда понятны. Сегодня речь пойдёт о маркировке FR на шине. Что это и стоит ли покупать модели с такими буквами?
Встретить данное обозначение можно исключительно на шинах торговой марки Continental, которая означает, что перед нами резина с бортиком, защищающим от повреждений диск. Если мы внимательно посмотрим на саму автошину, то увидим в бортовой зоне дополнительный элемент, похожий на уплотнение или поясок.

Ещё одно наименование утолщения в месте соприкосновения изделия и металла — это отбойник, который защищает от механических ударов в профиль. Способен противостоять боковым повреждениям на плохих дорогах, ударам об острый камень или при наезде на бордюр, разделяющий пешеходный тротуар и проезжую часть.

Все такие шины собраны в нашем каталоге по этой ссылке: шины с защитой обода

Шины с защитой диска: как их маркируют и стоит ли покупать

Дополнительные элементы на боковине шины помогают сохранить целостность диска при касательном ударе. И купить такие покрышки стоит тем, кто периодически ударяется о бордюр при параллельной парковке.

Темнота и торопливость при параллельной парковке приводят к ударам-притираниям о бордюрные камни. И тут уже как повезёт: в лучшем случае диск поцарапается, а в худшем – деформируется или расколется. Ни то ни другое не произойдёт, если эксплуатировать шины с защитой обода диска. Профессиональные продавцы шин в Минске информируют покупателей, есть ли такая защита на покрышке. Если же покупать шины без помощи, резину с защитой диска можно определить по характерным признакам либо по маркировке на боковине.

Стоит ли покупать

Как приём аскорбинок не гарантирует устойчивость иммунной системы перед вирусами, так и шины с защитой обода не гарантируют, что диски не придётся красить или ремонтировать. Если касание окажется ударом, амортизирующих свойств резины просто не хватит. Вместе с тем за такими покрышками всё же стоит поохотиться в магазинах Минска, если на автомобиле стоят дорогие литые диски. А именно на дорогих легкосплавных колёсах эксплуатируют низкопрофильную резину.

Будте в курсе событий ПЕРВЫМИ. Подписывайтесь и читайте нас :

Источник

Операции листовой штамповки

Разделительные операции

предназначены или для получения заготовки из листа или ленты, или для отделения одной части заготовки от другой. Операции могут выполняться по замкнутому или по незамкнутому контуру.

Отделение одной части заготовки от другой осуществляется относительным смещением этих частей в направлении, перпендикулярном к плоскости заготовки. Это смещение вначале характеризуется пластическим деформированием, а завершается разрушением.

Отрезка

– отделение части заготовки по незамкнутому контуру на специальных машинах – ножницах или в штампах.

Обычно ее применяют как заготовительную операции для разделения листов на полосы и заготовки нужных размеров.

Основные типы ножниц представлены на рис. 15.5.

Рис. 15.5. Схемы действия ножниц: а – гильотинных; б – дисковых

Ножницы с поступательным движением режущих кромок ножа могут быть с параллельными ножами, для резки узких полос, с одним наклонным ножом – гильотинные (рис.15.5.а). Режущие кромки в гильотинных ножницах наклонены друг к другу под углом 1…50 для уменьшения усилия резания. Лист подают до упора, определяющего ширину отрезаемой полосы В

. Длина отрезаемой полосы L не должна превышать длины ножей.

Ножницы с вращательным движением режущих кромок – дисковые (рис.15.5.б). Длина отрезаемой заготовки не ограничена инструментом. Вращение дисковых ножей обеспечивает не только разделение, но и подачу заготовки под действием сил трения. Режущие кромки ножей заходят одна за другую, это обеспечивает прямолинейность линии отрезки. Для обеспечения захвата и подачи заготовки диаметр ножей должен быть в 30…70 раз больше толщины заготовки, увеличиваясь с уменьшением коэффициента трения.

Вырубка

и
пробивка
– отделение металла по замкнутому контуру в штампе.

При вырубке и пробивке характер деформирования заготовки одинаков. Эти операции отличаются только назначением. Вырубкой оформляют наружный контур детали, а пробивкой – внутренний контур (изготовление отверстий).

Вырубку и пробивку осуществляют металлическими пуансоном и матрицей. Пуансон вдавливает часть заготовки в отверстие матрицы. Схема процессов вырубки и пробивки представлена на рис. 15.6.

Основным технологическим параметром операций является радиальный зазор между пуансоном и матрицей . Зазор назначают в зависимости от толщины и механических свойств заготовки, он приближенно составляет . При вырубке размеры отверстия матрицы равны размерам изделия, а размеры пуансона на меньше их. При пробивке размер пуансона равен размерам отверстия, а размеры матрицы на больше их.

Рис. 15.6. Схема процессов вырубки (а) и пробивки (б)

1 – пуансон, 2 – матрица, 3 – изделие, 4 – отход

Уменьшение усилия резания достигается выполнением скоса на матрице при вырубке, на пуансоне – при пробивке.

При штамповке мало- и среднегабаритных деталей из одной листовой заготовки вырубают несколько плоских заготовок для штамповки. Между смежными контурами вырубаемых заготовок оставляют перемычки шириной, примерно равной толщине заготовки. В отдельных случаях смежные заготовки вырубают без перемычек (экономия металла при ухудшении качества среза и снижении стойкости инструмента).

Расположение контуров смежных вырубаемых заготовок на листовом материале называется раскроем. Часть заготовки, оставшаяся после вырубки – высечкой.

Высечка составляет основной отход при листовой штамповке. Тип раскроя следует выбирать из условия уменьшения отхода металла в высечку (рис. 15.7).

Рис.15.7. Примеры раскроя материала с перемычками (а) и без перемычек (б)

Экономия металла может быть получена: уменьшением расхода металла на перемычки, применением безотходного и малоотходного раскроя, повышением точности расчета размеров заготовки и уменьшением припусков на обрезку.

ЛЕКЦИЯ 16

Холодная штамповка (продолжение)

Формообразование заготовок из порошковых материалов

Листовая штамповка

Формообразующие операции листовой штамповки

При формообразующих операциях стремятся получить заданную величину деформации, чтобы заготовка приобрела требуемую форму.

Основные формообразующие операции: гибка, вытяжка, отбортовка, обжим, раздача, рельефная формовка. Схемы формообразующих операций представлены на рис. 16.1.

Рис. 16.1. Формообразующие операции листовой штамповки

Гибка

– образование угла между частями заготовки или придание заготовке криволинейной формы.

При гибке пластически деформируется только участок заготовки в зоне контакта с пуансоном 1

(рис. 16.1.а): наружные слои заготовки растягиваются, а внутренние – сжимаются. Деформация растяжения наружных слоев и сжатия внутренних увеличивается с уменьшением радиуса скругления рабочего торца пуансона, при этом возрастает вероятность образования трещин. Поэтому минимальный радиус пуансона ограничивается величиной в пределах 0.1…2,0 от толщины заготовки, в зависимости от механических свойств материала.

При снятии нагрузки растянутые слои заготовки упруго сжимаются, а сжатые – растягиваются, что приводит к изменению угла гибки , т.е. к пружинению детали. Это следует учитывать или уменьшением угла инструмента на величину пружинения, или применением в конце рабочего хода дополнительного усилия.

Гибку производят в штампах, а также вращающимися фигурными роликами, играющими роль матрицы, на профилегибочных станах.

Вытяжка

– образование полого изделия из плоской или полой заготовки (рис.16.1.б).

Вырубленную заготовку диаметром и толщиной укладывают на плоскость матрицы 3.

Пуансон
1
надавливает на заготовку и она, смещаясь в отверстие матрицы, образует стенки вытянутой детали диаметром .

Формоизменение при вытяжке оценивают коэффициентом вытяжки , который в зависимости от механических характеристик металла и условий вытяжки не должен превышать 2,1.

При , возможны потеря устойчивости фланца и образование складок при вытяжке. Их предотвращают прижимом 2

фланца заготовки к матрице с определенным усилием .

Высокие детали малого диаметра получают за несколько операций вытяжки с постепенным уменьшением диаметра D полуфабриката и увеличением его высоты (рис. 16.1.в). При последующих переходах для предотвращения разрушения металла принимают

Промежуточный отжиг для устранения наклепа позволяет увеличить до 1,4…1,6.

Опасность разрушения заготовок устраняют применением смазочных материалов для уменьшения сил трения между поверхностями заготовок и инструмента.

При вытяжке зазор между матрицей и пуансоном составляет .

Отбортовка

– получение борта диаметром путем вдавливания центральной части заготовки с предварительно пробитым отверстием в матрицу (рис.16.1.г).

Формоизменение оценивают коэффициентом отбортовки

,

который зависит от механических характеристик металла заготовки и ее относительной толщины . Большее увеличение диаметра можно получить, если заготовку отжечь перед отбортовкой или изготовить отверстие резанием, создающим меньшее упрочнение у края отверстия.

Отбортовку применяют для изготовления кольцевых деталей с фланцами и для образования уступов в деталях для нарезания резьбы, сварки, а также для увеличения жесткости конструкции при малой массе.

Выделяется отбортовка наружного контура – образование невысоких бортов по наружному криволинейному краю заготовки.

Обжим

– уменьшение периметра поперечного сечения концевой части полой заготовки.

Производится заталкиванием заготовки в сужающуюся полость матрицы (рис. 16.1.д). За один переход можно получить . Для большего формоизменения выполняют несколько последовательных операций обжима.

Раздача

– увеличение периметра поперечного сечения концевой части полой заготовки коническим пуансоном; это операция противоположная обжиму.

Рельефная формовка

– местное деформирование заготовки с целью образования рельефа в результате уменьшения толщины заготовки (рис. 16.1.е).

Формовкой получают конструкционные выступы и впадины, ребра жесткости, лабиринтные уплотнения.

Штампы для листовой штамповки делятся по технологическому признаку в зависимости от выполняемой операции: вырубные, гибочные, вытяжные и т.д. В зависимости от числа выполняемых операций различают одно- и многооперационные штампы. Многооперационные штампы бывают последовательного действия, в которых операции выполняются последовательно при перемещении заготовки по нескольким рабочим позициям штампа, и совмещенного действия, в которых операции выполняются на одной позиции, например, одновременно вырубка и пробивка, вырубка и вытяжка и т.д.

В настоящее время применяют специальные конструкции штампов, в которых металлические пуансоны или матрицы отсутствуют, и давление на материал осуществляется при помощи резины, жидкости или сжатого воздуха (рис.16.2). При этом резина или жидкость легко удаляются из штампованной детали, а матрица должна быть разъемной.

При изготовлении небольших по глубине изделий пуансон заменяет резиновая подушка (рис.16.2.а). С помощью резины можно осуществлять все операции: вырубку, гибку, вытяжку, формовку. Матрица 3

крепится к столу, а резиновая подушка, помещенная в стальную обойму
1
, крепится к ходовой части пресса (толщина заготовки
2
– до 1,5 мм).

Рис. 16.2. Схемы листовой штамповки при помощи эластичной среды и жидкости

Резиновые пуансоны цилиндрической формы применяются при вытяжке изделий сложной формы, при необходимости увеличения диаметральных размеров средней части цилиндрических полуфабрикатов (рис.16.2.б).

При гидравлической вытяжке (рис.16.2.в) полые детали цилиндрической, конической, сферической или другой формы получают надавливанием на заготовку жидкостью или жидкостью, заключенной в эластичную оболочку.

Высокоскоростные методы штамповки

Особенностью таких методов является высокая скорость деформирования в соответствии с высокими скоростями преобразования энергии. Кратковременное приложение больших усилий разгоняет заготовку до скоростей 150 м/с. Последующее ее деформирование происходит за счет накопленной в период разгона кинетической энергии. Основными разновидностями высокоскоростной листовой штамповки являются: штамповка взрывом, электрогидравлическая и электромагнитная штамповка (рис.16.3).

Рис. 16.3. а- электрогидравлическая, б – электромагнитная штамповка

Штамповка взрывом

осуществляется в бассейнах, наполненных водой (рис.16.3.а). Заготовку
3
, зажатую между матрицей
5
и прижимом
4
опускают в бассейн с водой
2
. Полость матрицы под заготовкой вакуумируется при помощи вакуумной линии
6
. Заряд с детонатором
1
подвешивают в воде над заготовкой. Взрыв образует волну высокого давления, которая, достигая заготовки, вызывает ее разгон. Процесс штамповки длится тысячные доли секунды, а скорости перемещения заготовки соизмеримы со скоростями распространения пластических деформаций в металле. При штамповке взрывом не требуется дорогостоящего прессового оборудования, конструкция штампа крайне проста.

Электрогидравлическую штамповку

также осуществляют в бассейне с водой. Ударная волна, разгоняющая заготовку, возникает при кратковременном электрическом разряде в жидкости. Мощный искровой разряд подобен взрыву. В результате разряда в жидкости возникает ударная волна, которая, дойдя до заготовки, оказывает на нее сильное воздействие и деформирует ее по матрице.

При электромагнитной штамповке

(рис.16.3. б) электрическая энергия преобразуется в механическую за счет импульсного разряда батареи конденсаторов через соленоид
7
, вокруг которого при этом возникает мгновенное магнитное поле высокой мощности, наводящее вихревые токи в трубчатой токопроводящей заготовке
3
. Взаимодействие магнитных полей вихревых токов с магнитным полем индуктора создает механические силы , деформирующие заготовку. Для электромагнитной штамповки трубчатых и плоских заготовок созданы установки, на которых можно проводить обжим, раздачу, формовку иоперации получения неразъемных соединения деталей.

Формообразование заготовок из порошковых материалов

Заготовки из порошковых материалов получают прессованием (холодным, горячим), изостатическим формованием, прокаткой и другими способами.

При холодном прессовании

в пресс-форму (рис.16.4.а) засыпают определенное количество подготовленного порошка
3
и прессуют пуансоном
1
.

В процессе прессования увеличивается контакт между частицами, уменьшается пористость, деформируются или разрушаются отдельные частицы. Прочность получаемой заготовки достигается благодаря силам механического сцепления частиц порошка электростатическими силами притяжения и трения. С увеличением давления прессования прочность заготовки возрастает. Давление распределяется неравномерно по высоте прессуемой заготовки из-за влияния сил трения порошка о стенки пресс-формы, вследствие чего заготовки получаются с различной прочностью и пористостью по высоте. В зависимости от размеров и сложности прессуемых заготовок применяют одно- и двустороннее прессование.

Рис.16.4. Схема холодного прессования: а – одностороннего; б – двустороннего

Односторонним прессованием получают заготовки простой формы с отношением высоты к диаметру, меньшим единицы, и заготовки втулок с отношением наружного диаметра к толщине стенки, меньшим трех.

Двустороннее прессование (рис.16.4.б) применяют для формообразования заготовок сложной формы. После заполнения пресс-формы порошком к верхнему пуансону с помощью гидропресса прикладывают давление для предварительного прессования. Затем гидропривод выключают и удаляют подкладку 4

. В дальнейшем в процессе прессования участвуют оба пуансона. В этом случае требуемое давление для получения равномерной плотности снижается на 30…40 %. Использование вибрационного прессования позволяет в десятки раз уменьшить требуемое давление.

В процессе прессования частицы порошка подвергаются упругому и пластическому деформированию. После извлечения заготовки из пресс-формы ее размеры увеличиваются в результате упругого последействия.

При горячем прессовании

технологически совмещаются прессование и спекание заготовки. Температура горячего прессования составляет обычно 0,6…0,8 температуры плавления порошка. Благодаря нагреву уплотнение протекает гораздо интенсивнее, чем при холодном прессовании. Это позволяет значительно уменьшить необходимое давление. Горячим прессованием получают материалы, характеризующиеся высокой прочностью и однородностью структуры. Этот способ применяют для таких плохо прессуемых композиций, как тугоплавкие металлоподобные соединения (карбиды, бориды, силициды).

Изостатическое (всестороннее) формование

применяют для получения крупногабаритных заготовок с массой до 500 кг и более. Отсутствие потерь на внешнее трение и равномерность давления со всех сторон дают возможность получать необходимую плотность заготовок при давлениях, значительно меньших, чем при прессовании в закрытых пресс-формах.

При гидростатическом формовании (рис.16.5) на порошок 3

, заключенный в эластичную оболочку
2
, передается давление с помощью жидкости, находящейся в сосуде высокого давления
1
. В качестве рабочей жидкости используют масло, глицерин, воду и т.д.

Рис.16.5. Схема гидростатического формования

Прокатка

– наиболее производительный и перспективный способ переработки порошковых материалов. Характерной особенностью является высокая степень автоматизации и непрерывность прокатки. Схема прокатки представлена на рис.16.6.

Рис.16.6. Схема прокатки порошков

Порошок непрерывно поступает из бункера 1

в зазор между валками. При вращении валков
3
происходит обжатие и вытяжка порошка
2
в ленту или полосу
4
определенной толщины. Прокатка может быть совмещена со спеканием и окончательной обработкой получаемых заготовок. В этом случае лента проходит через печь для спекания, а затем снова подвергается прокатке для получения листов заданных размеров. Применяя бункеры с перегородкой (рис. 16.6.б) изготавливают ленты из разных материалов (двухслойные). Применение валков определенной формы позволяет получать валки различного профиля, в том числе и проволоку.

Разделительные операции

предназначены или для получения заготовки из листа или ленты, или для отделения одной части заготовки от другой. Операции могут выполняться по замкнутому или по незамкнутому контуру.

Отделение одной части заготовки от другой осуществляется относительным смещением этих частей в направлении, перпендикулярном к плоскости заготовки. Это смещение вначале характеризуется пластическим деформированием, а завершается разрушением.

Отрезка

– отделение части заготовки по незамкнутому контуру на специальных машинах – ножницах или в штампах.

Обычно ее применяют как заготовительную операции для разделения листов на полосы и заготовки нужных размеров.

Основные типы ножниц представлены на рис. 15.5.

Рис. 15.5. Схемы действия ножниц: а – гильотинных; б – дисковых

Ножницы с поступательным движением режущих кромок ножа могут быть с параллельными ножами, для резки узких полос, с одним наклонным ножом – гильотинные (рис.15.5.а). Режущие кромки в гильотинных ножницах наклонены друг к другу под углом 1…50 для уменьшения усилия резания. Лист подают до упора, определяющего ширину отрезаемой полосы В

. Длина отрезаемой полосы L не должна превышать длины ножей.

Ножницы с вращательным движением режущих кромок – дисковые (рис.15.5.б). Длина отрезаемой заготовки не ограничена инструментом. Вращение дисковых ножей обеспечивает не только разделение, но и подачу заготовки под действием сил трения. Режущие кромки ножей заходят одна за другую, это обеспечивает прямолинейность линии отрезки. Для обеспечения захвата и подачи заготовки диаметр ножей должен быть в 30…70 раз больше толщины заготовки, увеличиваясь с уменьшением коэффициента трения.

Вырубка

и
пробивка
– отделение металла по замкнутому контуру в штампе.

При вырубке и пробивке характер деформирования заготовки одинаков. Эти операции отличаются только назначением. Вырубкой оформляют наружный контур детали, а пробивкой – внутренний контур (изготовление отверстий).

Вырубку и пробивку осуществляют металлическими пуансоном и матрицей. Пуансон вдавливает часть заготовки в отверстие матрицы. Схема процессов вырубки и пробивки представлена на рис. 15.6.

Основным технологическим параметром операций является радиальный зазор между пуансоном и матрицей . Зазор назначают в зависимости от толщины и механических свойств заготовки, он приближенно составляет . При вырубке размеры отверстия матрицы равны размерам изделия, а размеры пуансона на меньше их. При пробивке размер пуансона равен размерам отверстия, а размеры матрицы на больше их.

Рис. 15.6. Схема процессов вырубки (а) и пробивки (б)

1 – пуансон, 2 – матрица, 3 – изделие, 4 – отход

Уменьшение усилия резания достигается выполнением скоса на матрице при вырубке, на пуансоне – при пробивке.

При штамповке мало- и среднегабаритных деталей из одной листовой заготовки вырубают несколько плоских заготовок для штамповки. Между смежными контурами вырубаемых заготовок оставляют перемычки шириной, примерно равной толщине заготовки. В отдельных случаях смежные заготовки вырубают без перемычек (экономия металла при ухудшении качества среза и снижении стойкости инструмента).

Расположение контуров смежных вырубаемых заготовок на листовом материале называется раскроем. Часть заготовки, оставшаяся после вырубки – высечкой.

Высечка составляет основной отход при листовой штамповке. Тип раскроя следует выбирать из условия уменьшения отхода металла в высечку (рис. 15.7).

Рис.15.7. Примеры раскроя материала с перемычками (а) и без перемычек (б)

Экономия металла может быть получена: уменьшением расхода металла на перемычки, применением безотходного и малоотходного раскроя, повышением точности расчета размеров заготовки и уменьшением припусков на обрезку.

ЛЕКЦИЯ 16

Холодная штамповка (продолжение)

Формообразование заготовок из порошковых материалов

Листовая штамповка

Формообразующие операции листовой штамповки

При формообразующих операциях стремятся получить заданную величину деформации, чтобы заготовка приобрела требуемую форму.

Основные формообразующие операции: гибка, вытяжка, отбортовка, обжим, раздача, рельефная формовка. Схемы формообразующих операций представлены на рис. 16.1.

Рис. 16.1. Формообразующие операции листовой штамповки

Гибка

– образование угла между частями заготовки или придание заготовке криволинейной формы.

При гибке пластически деформируется только участок заготовки в зоне контакта с пуансоном 1

(рис. 16.1.а): наружные слои заготовки растягиваются, а внутренние – сжимаются. Деформация растяжения наружных слоев и сжатия внутренних увеличивается с уменьшением радиуса скругления рабочего торца пуансона, при этом возрастает вероятность образования трещин. Поэтому минимальный радиус пуансона ограничивается величиной в пределах 0.1…2,0 от толщины заготовки, в зависимости от механических свойств материала.

При снятии нагрузки растянутые слои заготовки упруго сжимаются, а сжатые – растягиваются, что приводит к изменению угла гибки , т.е. к пружинению детали. Это следует учитывать или уменьшением угла инструмента на величину пружинения, или применением в конце рабочего хода дополнительного усилия.

Гибку производят в штампах, а также вращающимися фигурными роликами, играющими роль матрицы, на профилегибочных станах.

Вытяжка

– образование полого изделия из плоской или полой заготовки (рис.16.1.б).

Вырубленную заготовку диаметром и толщиной укладывают на плоскость матрицы 3.

Пуансон
1
надавливает на заготовку и она, смещаясь в отверстие матрицы, образует стенки вытянутой детали диаметром .

Формоизменение при вытяжке оценивают коэффициентом вытяжки , который в зависимости от механических характеристик металла и условий вытяжки не должен превышать 2,1.

При , возможны потеря устойчивости фланца и образование складок при вытяжке. Их предотвращают прижимом 2

фланца заготовки к матрице с определенным усилием .

Высокие детали малого диаметра получают за несколько операций вытяжки с постепенным уменьшением диаметра D полуфабриката и увеличением его высоты (рис. 16.1.в). При последующих переходах для предотвращения разрушения металла принимают

Промежуточный отжиг для устранения наклепа позволяет увеличить до 1,4…1,6.

Опасность разрушения заготовок устраняют применением смазочных материалов для уменьшения сил трения между поверхностями заготовок и инструмента.

При вытяжке зазор между матрицей и пуансоном составляет .

Отбортовка

– получение борта диаметром путем вдавливания центральной части заготовки с предварительно пробитым отверстием в матрицу (рис.16.1.г).

Формоизменение оценивают коэффициентом отбортовки

,

который зависит от механических характеристик металла заготовки и ее относительной толщины . Большее увеличение диаметра можно получить, если заготовку отжечь перед отбортовкой или изготовить отверстие резанием, создающим меньшее упрочнение у края отверстия.

Отбортовку применяют для изготовления кольцевых деталей с фланцами и для образования уступов в деталях для нарезания резьбы, сварки, а также для увеличения жесткости конструкции при малой массе.

Выделяется отбортовка наружного контура – образование невысоких бортов по наружному криволинейному краю заготовки.

Обжим

– уменьшение периметра поперечного сечения концевой части полой заготовки.

Производится заталкиванием заготовки в сужающуюся полость матрицы (рис. 16.1.д). За один переход можно получить . Для большего формоизменения выполняют несколько последовательных операций обжима.

Раздача

– увеличение периметра поперечного сечения концевой части полой заготовки коническим пуансоном; это операция противоположная обжиму.

Рельефная формовка

– местное деформирование заготовки с целью образования рельефа в результате уменьшения толщины заготовки (рис. 16.1.е).

Формовкой получают конструкционные выступы и впадины, ребра жесткости, лабиринтные уплотнения.

Штампы для листовой штамповки делятся по технологическому признаку в зависимости от выполняемой операции: вырубные, гибочные, вытяжные и т.д. В зависимости от числа выполняемых операций различают одно- и многооперационные штампы. Многооперационные штампы бывают последовательного действия, в которых операции выполняются последовательно при перемещении заготовки по нескольким рабочим позициям штампа, и совмещенного действия, в которых операции выполняются на одной позиции, например, одновременно вырубка и пробивка, вырубка и вытяжка и т.д.

В настоящее время применяют специальные конструкции штампов, в которых металлические пуансоны или матрицы отсутствуют, и давление на материал осуществляется при помощи резины, жидкости или сжатого воздуха (рис.16.2). При этом резина или жидкость легко удаляются из штампованной детали, а матрица должна быть разъемной.

При изготовлении небольших по глубине изделий пуансон заменяет резиновая подушка (рис.16.2.а). С помощью резины можно осуществлять все операции: вырубку, гибку, вытяжку, формовку. Матрица 3

крепится к столу, а резиновая подушка, помещенная в стальную обойму
1
, крепится к ходовой части пресса (толщина заготовки
2
– до 1,5 мм).

Рис. 16.2. Схемы листовой штамповки при помощи эластичной среды и жидкости

Резиновые пуансоны цилиндрической формы применяются при вытяжке изделий сложной формы, при необходимости увеличения диаметральных размеров средней части цилиндрических полуфабрикатов (рис.16.2.б).

При гидравлической вытяжке (рис.16.2.в) полые детали цилиндрической, конической, сферической или другой формы получают надавливанием на заготовку жидкостью или жидкостью, заключенной в эластичную оболочку.

Высокоскоростные методы штамповки

Особенностью таких методов является высокая скорость деформирования в соответствии с высокими скоростями преобразования энергии. Кратковременное приложение больших усилий разгоняет заготовку до скоростей 150 м/с. Последующее ее деформирование происходит за счет накопленной в период разгона кинетической энергии. Основными разновидностями высокоскоростной листовой штамповки являются: штамповка взрывом, электрогидравлическая и электромагнитная штамповка (рис.16.3).

Рис. 16.3. а- электрогидравлическая, б – электромагнитная штамповка

Штамповка взрывом

осуществляется в бассейнах, наполненных водой (рис.16.3.а). Заготовку
3
, зажатую между матрицей
5
и прижимом
4
опускают в бассейн с водой
2
. Полость матрицы под заготовкой вакуумируется при помощи вакуумной линии
6
. Заряд с детонатором
1
подвешивают в воде над заготовкой. Взрыв образует волну высокого давления, которая, достигая заготовки, вызывает ее разгон. Процесс штамповки длится тысячные доли секунды, а скорости перемещения заготовки соизмеримы со скоростями распространения пластических деформаций в металле. При штамповке взрывом не требуется дорогостоящего прессового оборудования, конструкция штампа крайне проста.

Электрогидравлическую штамповку

также осуществляют в бассейне с водой. Ударная волна, разгоняющая заготовку, возникает при кратковременном электрическом разряде в жидкости. Мощный искровой разряд подобен взрыву. В результате разряда в жидкости возникает ударная волна, которая, дойдя до заготовки, оказывает на нее сильное воздействие и деформирует ее по матрице.

При электромагнитной штамповке

(рис.16.3. б) электрическая энергия преобразуется в механическую за счет импульсного разряда батареи конденсаторов через соленоид
7
, вокруг которого при этом возникает мгновенное магнитное поле высокой мощности, наводящее вихревые токи в трубчатой токопроводящей заготовке
3
. Взаимодействие магнитных полей вихревых токов с магнитным полем индуктора создает механические силы , деформирующие заготовку. Для электромагнитной штамповки трубчатых и плоских заготовок созданы установки, на которых можно проводить обжим, раздачу, формовку иоперации получения неразъемных соединения деталей.

Формообразование заготовок из порошковых материалов

Заготовки из порошковых материалов получают прессованием (холодным, горячим), изостатическим формованием, прокаткой и другими способами.

При холодном прессовании

в пресс-форму (рис.16.4.а) засыпают определенное количество подготовленного порошка
3
и прессуют пуансоном
1
.

В процессе прессования увеличивается контакт между частицами, уменьшается пористость, деформируются или разрушаются отдельные частицы. Прочность получаемой заготовки достигается благодаря силам механического сцепления частиц порошка электростатическими силами притяжения и трения. С увеличением давления прессования прочность заготовки возрастает. Давление распределяется неравномерно по высоте прессуемой заготовки из-за влияния сил трения порошка о стенки пресс-формы, вследствие чего заготовки получаются с различной прочностью и пористостью по высоте. В зависимости от размеров и сложности прессуемых заготовок применяют одно- и двустороннее прессование.

Рис.16.4. Схема холодного прессования: а – одностороннего; б – двустороннего

Односторонним прессованием получают заготовки простой формы с отношением высоты к диаметру, меньшим единицы, и заготовки втулок с отношением наружного диаметра к толщине стенки, меньшим трех.

Двустороннее прессование (рис.16.4.б) применяют для формообразования заготовок сложной формы. После заполнения пресс-формы порошком к верхнему пуансону с помощью гидропресса прикладывают давление для предварительного прессования. Затем гидропривод выключают и удаляют подкладку 4

. В дальнейшем в процессе прессования участвуют оба пуансона. В этом случае требуемое давление для получения равномерной плотности снижается на 30…40 %. Использование вибрационного прессования позволяет в десятки раз уменьшить требуемое давление.

В процессе прессования частицы порошка подвергаются упругому и пластическому деформированию. После извлечения заготовки из пресс-формы ее размеры увеличиваются в результате упругого последействия.

При горячем прессовании

технологически совмещаются прессование и спекание заготовки. Температура горячего прессования составляет обычно 0,6…0,8 температуры плавления порошка. Благодаря нагреву уплотнение протекает гораздо интенсивнее, чем при холодном прессовании. Это позволяет значительно уменьшить необходимое давление. Горячим прессованием получают материалы, характеризующиеся высокой прочностью и однородностью структуры. Этот способ применяют для таких плохо прессуемых композиций, как тугоплавкие металлоподобные соединения (карбиды, бориды, силициды).

Изостатическое (всестороннее) формование

применяют для получения крупногабаритных заготовок с массой до 500 кг и более. Отсутствие потерь на внешнее трение и равномерность давления со всех сторон дают возможность получать необходимую плотность заготовок при давлениях, значительно меньших, чем при прессовании в закрытых пресс-формах.

При гидростатическом формовании (рис.16.5) на порошок 3

, заключенный в эластичную оболочку
2
, передается давление с помощью жидкости, находящейся в сосуде высокого давления
1
. В качестве рабочей жидкости используют масло, глицерин, воду и т.д.

Рис.16.5. Схема гидростатического формования

Прокатка

– наиболее производительный и перспективный способ переработки порошковых материалов. Характерной особенностью является высокая степень автоматизации и непрерывность прокатки. Схема прокатки представлена на рис.16.6.

Рис.16.6. Схема прокатки порошков

Порошок непрерывно поступает из бункера 1

в зазор между валками. При вращении валков
3
происходит обжатие и вытяжка порошка
2
в ленту или полосу
4
определенной толщины. Прокатка может быть совмещена со спеканием и окончательной обработкой получаемых заготовок. В этом случае лента проходит через печь для спекания, а затем снова подвергается прокатке для получения листов заданных размеров. Применяя бункеры с перегородкой (рис. 16.6.б) изготавливают ленты из разных материалов (двухслойные). Применение валков определенной формы позволяет получать валки различного профиля, в том числе и проволоку.

Советы профессионалов

Бортирование колес– непростая работа, требующая определенных навыков. Поэтому нужно выполнять рекомендации специалистов для самостоятельной бортировки шин.

  1. Если требуется заменить только одну шину- нельзя ставить другой тип резины. Особенно не стоит менять летнюю шину на зимнюю и наоборот.
  2. Важно учитывать типоразмер камер, дисков и покрышек.
  3. После покупки новой резины камеру лучше установить также новую.
  4. Нельзя допускать грязь во внутреннюю полость шины.
  5. Для отделения и снятия резины с диска можно использовать домкрат, монтажные лопатки и другой подходящий инструмент, не допуская повреждений колеса.
  6. Колеса необходимо периодически осматривать, чтобы вовремя обнаружить дефекты и устранить их.
  7. Не допускается для разбортировки использовать острые предметы, которые могут повредить шину. Например, водители с небольшим опытом иногда применяют для таких целей отвертки. Это приводит к дополнительным расходам.

Если в дороге колесо стало спускать, и Вы обнаружили в нем острый гвоздь, не торопитесь его сразу вытаскивать. Он позволит на некоторое время сохранить давление, и доехать до ближайшей авторемонтной мастерской.

Перебортировка занимает немало времени и сил, и требует наличия удобных монтажных лопаток. Новички часто используют для разбортировки острую отвертку и молоток, что делать категорически запрещено. Вначале повреждения могут быть незаметными, но впоследствии они себя проявят. Монтажки должны иметь закругления на концах, чтобы не повреждать резину.

Внимание! Для ремонта колес удобно использовать отрезок металлического уголка сечением 40х40 мм. Его используют для вставки между диском и покрышкой.

Как маркируют шины с защитой диска

У производителей нет единого правила, как маркировать шины с защитой обода диска. При этом практикуется буквенное обозначение, и у разных брендов оно разное. Примеры из того, что продают в Минске:

  • у шин Goodyear – FP (Fringe Protector, в пер. «защита кромки»);
  • у шин Dunlop – MFS (Maximum Flange Shield, в пер. «максимальная защита борта»);
  • у шин Yokohama – RPB (Rim Protection Bar, в пер. «защитная планка обода»).

Собственные маркировки также используют Bridgestone, Continental и Pirelli, а вот на шинах Michelin её нет.

Важно упомянуть: защита обода диска может быть предусмотрена как у всех типоразмеров определённой модели, так и на выборочных. Более того, одна и та же модель в одном и том же типоразмере для первичной комплектации может иметь защитные элементы в бортовой зоне, а для вторичного рынка – нет.

Процесс отбортовки – основные этапы

Технологией предусмотрено выполнение операции за несколько переходов. К примеру, для получения кромки 40 мм требуется край трубы раздать в стороны на 10-15 мм больше, чем высота патрубка. Он будет составлять 50-55 мм, при этом следует соблюдать диаметр патрубка в ходе дальнейшей операции (рис. б).

При выполнении загиба на высоте 40 мм от края патрубка, без предварительно выполненной разбивки, будет наблюдаться сужение диаметра (рис. в).

После того, как выполнена разбивка конца трубы, начинается операция отбортовки. Для этого деталь устанавливается на наковальню (рис. г) и наискось наносятся удары молотком, предотвращая появление трещин на кромке. Во избежание дефектов, не следует проводить обработку на весу. Выполнение загиба краев осуществляется последовательно, в два-три приема, до того момента, пока не будет достигнут показатель 90°.

Следует проводить равномерное распределение ударов молотком по всему краю, не выполняя излишних ударов в одну точку. При отбортовке и после получения края следует выполнить правку места загиба на накольване, используя гладильный молоток.

Проведение отбортовки вручную является трудоемкой операцией, занимает много рабочего времени, требует расхода материала в большем количестве. При данной операции рекомендуется использовать приспособления и вспомогательные инструменты, оправки и станочное оборудование, существенно повышающие продуктивность и качественные характеристики работы.

Разбортировка наездом на колесо

Главная сложность работы заключается в том, что для отделения покрышки от диска даже веса человека недостаточно. На это влияет также снижение эластичности резины со временем. Водители иногда используют наезд автомобилем на дефектное колесо, когда другой возможности ремонта нет.


Чтобы нагрузка распределялась более равномерно, можно использовать отрезок широкой доски длиной не менее 1 метра. Такой способ хорош тем, что отсутствуют ударные нагрузки, однако часто резина приходит в негодность. Эту работу рекомендуется выполнять с помощником, чтобы регулировать скорость наезда и создаваемое усилие.

Как бортировать колесо домкратом и тросом


Это один из простых способов самостоятельной разбортировки и бортировки колеса. Если действовать по приведенной ниже инструкции, то можно легко выполнить эту работу своими руками.

  1. Снимите колесо с автомобиля и очистите от грязи.
  2. Выкрутите ниппель, спустите воздух.
  3. Положите колесо ниппелем наверх.
  4. Буксировочный трос привяжите к диску и домкрату, как показано на фото.
  5. Установите домкрат ближе к диску на шину. Если она камерная, то нельзя ставить домкрат рядом со штуцером, иначе при разбортировке он оторвется.
  6. Концы троса надежно закрепите между собой.
  7. Поднимайте домкрат вверх, натягивая трос и перемещая вниз боковину шины. Делайте это до тех пор, пока покрышка не отойдет от диска.
  8. Если нужно только заменить или заклеить проколотую камеру, то поднимите боковину шины монтажными лопатками со стороны штуцера и заведите ее на край диска.
  9. Втолкните штуцер во внутреннюю полость и вытащите камеру из покрышки.

Внимание! Если ниппель исправен, то его можно выкрутить и использовать для новой камеры, либо положить в запас.

Установка новой камеры

Работа по бортировке занимает меньше времени и сил, но выполнять ее нужно также в определенном порядке.

  1. Возьмите новую камеру и выкрутите из нее ниппель; спустите давление воздуха, выдавив его принудительно.
  2. Отведите боковину резины со стороны места расположения штуцера.
  3. Поместите часть камеры со штуцером в покрышку и вставьте его в отверстие диска.
  4. Установите всю камеру на место.
  5. Подкачайте слегка камеру без ниппеля, чтобы она расправилась и заняла свое место. Это нужно также для того, чтобы при бортировке не зацепить ее монтировкой и не повредить.
  6. Монтажными лопатками осторожно забортируйте покрышку по периметру.

Какие производители производят резину с отбойником?

Применяется премиальными или именитыми брендами, каждый из которых обозначает наличие этого элемента по-своему:

  • FP — «Защитник закраины» (Flange Protector) или RFP — «Защита края обода» (Rim Fringe Protector) у Goodyear
  • FR — «Защита кромки» (Flange Protector) у Continental, а также ML — «С кромкой» (Mit Leiste на нем.) для шин, омологированных для Mercedes или Audi
  • RPB — «Защитная планка обода» (Rim Protection Bar) у Yokohama
  • MFS — «Максимальная защита борта» (Maximum Flange Shield) у Dunlop

Как видно из названий, суть идентична — защитить от повреждений. Известно также об обозначении CPJ, которое используется компанией Michelin у шин с таким же функционалом, произведённым для североамериканского рынка. На отсутствие специального уплотнения указывают буквы FB (Flat Base) — «плоское основание», но ставятся они не на всех шинах.

Если вы ездите на низкопрофильной резине и забоитесь о сохранности своих дисков, рекомендуем купить шины с маркировкой FR/FP/FRP/RPB/MFS и другими.

Источник

Для чего нужны шины с защитой бортика?

Необходимость создания покрышек с таким функционалом возникла неслучайно. Опытные водители знают, что во время парковки, когда места недостаточно, случается притирание о бордюр, вследствие которого можно поцарапать и даже повредить диск.

Будучи красивыми и эффектными, легкосплавные диски очень хрупкие. В случае вмятин они не всегда поддаются ремонту, во время которого иногда раскалываются. Поэтому водители стараются быть предельно аккуратными, особенно в тёмное время суток.

Производители, понимая создавшуюся проблему, решили сделать специальное укрепление борта, защищая, таким образом, колёсный диск от случайного повреждения.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]