Теплоемкость чугуна и стали


Теплофизические свойства чугуна

Коэффициент линейного расширения α, удельная теплоемкость с и теплопроводность λ зависят от состава и структуры чугуна, а также от температуры. Поэтому значения их приводят в соответствующем интервале температур. С повышением температуры значения α и с обычно увеличиваются, а λ уменьшается (табл 1).
Таблица 1. Теплофизические свойства серого чугуна в зависимости от температуры

Температура, °Cα, 1/°Cc, Дж/(кг∗°C)λ, Вт/(м∗°C)
6010,050254,4
16011,052350,2
26013,155348,1
36013,758646,0
51015,9620

Коэффициент линейного расширения α и удельная теплоемкость c реальных неоднородных структур, в том числе чугуна, может быть определена по правилу смешения:


Таблица 2. Теплофизические свойства структурных составляющих чугуна

Структурная составляющаяα 100 200, 1/°Cc 100 ,Дж/(кг∗°C)λ 100 Вт/(м∗°C)
Феррит12,0-12,6460-47072,8-75,5
Аустенит18-1950241,8
Цементит6,0-6,561549,0
Перлит10,0-11,648650,3-51,9
Графит1,4-3,7795355,8

Теплопроводность сплавов и смесей в отличие от коэффициента α и теплоемкости c не может быть определена по правилу смешения. Влияние отдельных элементов на теплопроводность расчетным путем можно установить лишь приближенно.

На коэффициент α и удельную теплоемкость с влияет главным образом состав чугуна, а на теплопроводность λ — степень графитизации, дисперсность структуры, неметаллические включения и т. п.

Коэффициент линейного расширения определяет не только изменения размеров в зависимости от температуры, но и напряжения, образующиеся в отливках. Уменьшение α является полезным с этих позиции и облегчает условия получения качественных отливок. Но в случае совместной работы чугунных деталей с деталями из цветных сплавов или других материалов, имеющих больший коэффициент линейного расширения, приходится стремиться к увеличению значения α для чугуна.

Теплоемкость и теплопроводность имеют большое значение для таких отливок, как отопительные трубы, изложницы, детали холодильных установок и двигателей внутреннего сгорания и т.д., так как определяют равномерность распределения температуры в отливках и интенсивность отвода теплоты.

В табл. 3 приведены теплофизические свойства чугунов различных групп.

Таблица 3. Теплофизические свойства чугуна

Чугунα20 100 ∗10 6 , 1/°Cc20 100 , Дж/(кг∗°C)c20 1000 , Дж/(кг∗°C)λ20 100 , Вт/(м∗°C)
Серый с пластинчатым графитом (ГОСТ 1412-85):
СЧ10-СЧ1810-11502-544586-62846,0-54,4
СЧ20-СЧ3010-11502-544586-62841,8-50,2
СЧ3511,5-12,0502-544628-67037,6-46,0
Высокопрочный (ГОСТ 7293-85):
ВЧ 35-ВЧ 4511,5-12,5460-502586-62837,6-46,0
ВЧ 60-ВЧ 8010-11502-523628-67033,5-41,9
ВЧ 1009-10523-565628-67029,3-37,6
Ковкий (ГОСТ 7769-82):
КЧ 30-6/КЧ 37-1210,5-11,0460-511586-62854,4-62,8
КЧ 45-5/КЧ 65-310,3-10,8527-544628-67050,2-54,4
Легированный (ГОСТ 7769-82)
никелевый ЧН20Д2Ш17-19460-50217,4
с 35-37% Ni1,5-2,5
хромистый:
ЧХ1632,5 *1
ЧХ2225,5 *1
ЧХ289-1017,4 *1
ЧХ329-1019,8 *1
кремнистый:
ЧС514-17 *221,0 *3
ЧС15, ЧС174,7 *110,5
алюминиевый:
ЧЮ22Ш17,5 *115,1-28,0 *3
ЧЮ3022-23 *2
*1В интервале 20-200 °C.
*2В интервале 20-900 °C.
*3В интервале 20-500 °C.

Удельная теплоемкость чугуна

В таблице представлены значения средней удельной теплоемкости чугуна и энтальпия (теплосодержание) серых чугунов различного состава в зависимости от температуры.
Теплоемкость чугуна выражена в кДж/(кг·град) и указана в диапазоне от 100 до 1350°С. Из таблицы видно, что с повышением температуры значения массовой теплоемкости чугуна и его энтальпия возрастают.

То же можно сказать и про энтальпию серых чугунов. Значения удельной теплоемкости чугунов и их энтальпия имеют различие в зависимости от состава чугуна. Например, при температуре 200°С теплоемкость чугуна в зависимости от состава изменяется от 290,1 до 460,5 Дж/(кг·град). При нагревании чугуна до температуры 1300°С эта величина увеличивается и становится равной 800…900 Дж/(кг·град).

Коэффициент линейного расширения α

Коэффициент линейного расширения α. Наибольшее влияние на коэффициент α оказывает углерод, в особенности в связанном состоянии. Одному проценту углерода соответствует примерно в 5 раз большее количество цементита, чем графита. Поэтому графитизирующие элементы (Si, Al, Ti, Ni, Сu и др.) повышают, а антиграфнтизирующие (Cr, V, W, Мо, Мn и др.) уменьшают коэффициент линейного расширения,

Наибольшим значением α отличаются аустенитные никелевые чугуны, а также ферритные алюминиевые чугуны типа чугаль и пирофераль. Поэтому при достаточно высоком содержании Ni, Сu, Мn значение α; резко увеличивается. Однако при содержании Ni>20% α понижается : и достигает минимума при 35—37 % Ni. Форма графита существенно влияет на коэффициент линейного расширения лишь при низких температурах; α высокопрочного чугуна с шаровидным графитом несколько выше, чем α чугуна с пластинчатым графитом.

Плотность чугуна, температура плавления и коэффициент линейного расширения

В таблице представлена плотность чугуна различных сортов, а также температура плавления чугуна и его коэффициент теплового линейного расширения (КТлР).

Следует отметить что плотность чугуна в зависимости от сорта находится в диапазоне от 6600 до 7700 кг/м3. Температура плавления чугуна составляет от 1095 до 1315°С, а его КТлР от 10,5 до 18·10-6 1/град.
Плотность чугуна, температура плавления и коэффициент расширения

Плотность чугуна, кг/м3
Серый чугун наименее плотный высокоуглеродистый6600-6950
Серый чугун обычный средней плотности7000-7300
Высококачественный чугун малоуглеродистый7400-7500
Жаростойкий, жаропрочный7500-7600
Чугун высоколегированный аустенитного класса7500-7700
Температура плавления чугуна, °С
Обычный серый чугун1095-1315
Жаростойкий чугун1300
Коэффициент линейного расширения чугуна (КТлР), 1/град
Обычный серый при температуре 20…450°С10,5·10-6
Обычный серый при температуре 20…750°С14·10-6
Высоколегированный аустенитного класса при температуре 20…150°С(16…18)·10-6
Жаростойкий чугун при температуре 20…250°С16,7·10-6
Жаростойкий чугун при температуре 250…750°С17,6·10-6

Источники:

  1. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  2. Чиркин В. С. Теплофизические свойства материалов ядерной техники. Справочник.

Теплопроводность чугуна.

Теплопроводность чугуна в большей мере, чем другие физические свойства, зависит от структуры, ее дисперсности и мельчайших загрязнений, т. е. является структурно-чувствительным свойством.

Графитизация повышает теплопроводность; следовательно, элементы увеличивающие степень графитизации и размер графита, повышают, а элементы, препятствующие графитизации и увеличивающие дисперсность структурных составляющих, понижают. Указанное влияние графитизация меньше для шаровидного графита (см. табл. 4).

Форма графита, его выделение и распределение также влияют на теплопроводность. Например, высокопрочный чугун имеет более низкую теплопроводность, чем серый чугун. Теплопроводность чугуна с вермикулярным графитом (ЧВГ) выше, чем у ЧШГ, и близка к λ серого чугуна с пластинчатым графитом.

Высоколегированные чугуны характеризуются, как правило, более низкой теплопроводностью, чем обычные.

Ванны и батареи физика

Принципы расчета теплоёмкости металлической посуды применимы для батарей и ванн.

Чугунная батарея остывает дольше.

Еще раз обращу внимание, что темпы остывания предмета напрямую зависят от массы и удельной теплоёмкости материала, из которого он изготовлен. Не путать теплоёмкость и теплопроводность!

Чугунная батарея тяжелее алюминиевой раза в три. Следовательно, обладает большей теплоёмкостью в 2,5 раза.

Очень часто задают вопрос: почему чугунные батареи остывают дольше стальных?

И удельные теплоёмкости — 540 Дж/(кг*К) для чугуна и 460 Дж/(кг*К) для стали — относительно мало отличаются (15%). А весь секрет — в значительной степени — заключается в существенно большей массе чугунных батарей.

Масса секции батарей:

Металл секцииМасса секции, кг
алюминий0,5 — 1,5
биметалл (сталь с алюминием)1,5
чугун3,7 — 5,9

Если же сравнивать две одинаковые по массе батареи — из стали и чугуна — то при одинаковой температуре прогрева чугунная батарея сохранит тепла больше на 15%.

Чугунная ванна сохраняет тепло.

Чугунная ванна:

Масса100 кг
Коэффициент удельной теплоёмкости чугуна540 Дж/(кг*К)
Теплоёмкость самой ванны из чугуна100 кг * 540 Дж/(кг*К) = 54 кДж/К

Стальная ванна:

Масса30 кг
Коэффициент удельной теплоёмкости стали720 Дж/(кг*К)
Теплоёмкость самой ванны из стали30 кг * 720 Дж/(кг*К) = 21,6 кДж/К

То есть количество выделяемого тепла при остывании на 1 градус у чугунной ванны больше, чем у ванны из стали (в нашем примере) в 2,5 раза.

Теплоёмкость воды в ванне:

Объем100 литров = 0,1 куб. м
Плотность воды1000 кг/куб. м
Коэффициент удельной теплоёмкости воды4183 Дж/(кг*К)
Теплоёмкость воды в ванне0,1 куб. м * 1000 кг/куб. м * 4183 Дж/(кг*К) = 418,3 кДж/К

Из чего следует, температура горячей воды (40 градусов), налитая в ванну при комнатной температуре (20 градусов) упадет на 1 градус для стальной ванны и на 2,5 градуса для чугунной ванны.

Похожие статьи:

теплоёмкость | Дамир.рф

Принципы расчета теплоёмкости металлической посуды применимы для батарей и ванн.

Чугунная батарея остывает дольше

Еще раз обращу внимание, что темпы остывания предмета напрямую зависят от массы и удельной теплоёмкости материала, из которого он изготовлен. Не путать теплоёмкость и теплопроводность!

Чугунная батарея тяжелее алюминиевой раза в три. Следовательно, обладает большей теплоёмкостью в 2,5 раза.

Очень часто задают вопрос: почему чугунные батареи остывают дольше стальных?

И удельные теплоёмкости — 540 Дж/(кг*К) для чугуна и 460 Дж/(кг*К) для стали — относительно мало отличаются (15%). А весь секрет — в значительной степени — заключается в существенно большей массе чугунных батарей.

Масса секции батарей:

Металл секцииМасса секции, кг

алюминий0,5 — 1,5
биметалл (сталь с алюминием)1,5
чугун3,7 — 5,9

Если же сравнивать две одинаковые по массе батареи — из стали и чугуна — то при одинаковой температуре прогрева чугунная батарея сохранит тепла больше на 15%.

Чугунная ванна сохраняет тепло

Чугунная ванна:

Масса100 кг
Коэффициент удельной теплоёмкости чугуна540 Дж/(кг*К)
Теплоёмкость самой ванны из чугуна100 кг * 540 Дж/(кг*К) = 54 кДж/К

Стальная ванна:

Масса30 кг
Коэффициент удельной теплоёмкости стали720 Дж/(кг*К)
Теплоёмкость самой ванны из стали30 кг * 720 Дж/(кг*К) = 21,6 кДж/К

То есть количество выделяемого тепла при остывании на 1 градус у чугунной ванны больше, чем у ванны из стали (в нашем примере) в 2,5 раза.

Теплоёмкость воды в ванне:

Объем100 литров = 0,1 куб. м
Плотность воды1000 кг/куб. м
Коэффициент удельной теплоёмкости воды4183 Дж/(кг*К)
Теплоёмкость воды в ванне0,1 куб. м * 1000 кг/куб. м * 4183 Дж/(кг*К) = 418,3 кДж/К

Из чего следует, температура горячей воды (40 градусов), налитая в ванну при комнатной температуре (20 градусов) упадет на 1 градус для стальной ванны и на 2,5 градуса для чугунной ванны.

Возвращаясь к теме металлической посуды, покажу в цифрах физику процессов.

Теплопроводимость

Теплопроводность численно равна количеству теплоты (Дж), проходящее через единицу площади (кв.м) за единицу времени (сек) при единичном температурном градиенте.

Коэффициенты теплопроводности из справочника:

МеталлКоэффициент теплопроводности, Вт/(м*К)

Медь390
Алюминий236
Сталь47
Чугун42

Вывод: чугун распределяет тепло медленно. Иными словами, мясо на чугунной сковороде не будет пригорать (в том числе) из-за более равномерного распределения тепла.

Похожая ситуация в приготовлении шашлыка на природе. Приготовление мяса на углях позволяет пропечь куски. Приготовление на открытом огне просто зажаривает внешнюю часть кусков мяса, оставив внутренние части сырыми.

Удельная теплоёмкость

Удельная теплоёмкость – количество теплоты (Дж), которое необходимо передать единице массы вещества (кг), чтобы его температура изменилась на единицу температуры (К).

Иными словами, чтобы посчитать теплоёмкость металлической посуды – сколько тепловой энергии будет в прогретой до нужной температуры посуде – необходимо массу посуды (кг) умножить на удельную теплоёмкость металла (Дж/(кг*К)), из которого она изготовлена.

Значения удельной теплоёмкости из справочника:

МеталлУдельная теплоёмкость, Дж/(кг*К)

Алюминий930
Чугун540
Сталь460
Медь385

Приблизительные массы металлических сковород:

СковородаМасса, кг

Алюминиевая сковорода с ручкой (диаметр 260 мм)0,65
Чугунная сковорода с ручкой (черный чугун; диаметр 250 мм; глубина 40 мм)2,10

Вывод: чугунная посуда массой 2,1кг будет почти в два раза (1,9 раза) больше отдавать тепла, чем алюминиевая посуда массой 0,65кг. И наоборот, чугунная посуда требует в два раза больше энергии для прогрева, чем алюминиевая посуда.

Иными словами, для поддержания (сохранения) температуры готовки чугунная посуда подходит лучше. А для разогрева еды будет более пригодна алюминиевая посуда.

Теплопроводимость.

Теплопроводность численно равна количеству теплоты (Дж), проходящее через единицу площади (кв.м) за единицу времени (сек) при единичном температурном градиенте.

Коэффициенты теплопроводности из справочника:

МеталлКоэффициент теплопроводности, Вт/(м*К)
Медь390
Алюминий236
Сталь47
Чугун42

Вывод: чугун распределяет тепло медленно. Иными словами, мясо на чугунной сковороде не будет пригорать (в том числе) из-за более равномерного распределения тепла.

Похожая ситуация в приготовлении шашлыка на природе. Приготовление мяса на углях позволяет пропечь куски. Приготовление на открытом огне просто зажаривает внешнюю часть кусков мяса, оставив внутренние части сырыми.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]