Предел упругости сталей таблица

Для быстрого поиска марки стали и её предела текучести нажмите Ctrl+F

.

Важно! Предел текучести той или иной марки стали может изменяться от типа термообработки и температуры. Если необходима точная информация о пределе текучести стали, то её можно узнать в сопроводительной документации к конкретному составу, марке или сплаву.

МаркаПредел текучести, МПа
Сталь Ст0190
Сталь Ст1190
Сталь Ст2220
Сталь СтЗ240
Сталь Ст4260
Сталь Ст5280
Сталь Ст6310

‘);> //–>

‘);> //–>

Сталь 08200
Сталь 10210
Сталь 15230
Сталь 20250
Сталь 25280
Сталь 30300
Сталь 35320
Сталь 40340
Сталь 45360
Сталь 50380
Сталь 20Г280
Сталь З0Г320
Сталь 40Г360
Сталь 50Г400
Сталь 65Г440
Сталь 10Г2250
Сталь 09Г2С350
Сталь 10ХСНД400
Сталь 20Х300
Сталь 30Х320
Сталь 40Х330
Сталь 45Х350
Сталь 50Х350
Сталь 35Г2370
Сталь 40Г2390
Сталь 45Г2410
Сталь 33ХС300
Сталь 38ХС750
Сталь 18ХГТ430
Сталь 30ХГТ1050
Сталь 20ХГНР1200
Сталь 40ХФА750
Сталь 30ХМ750
Сталь 35ХМ850
Сталь 40ХН400
Сталь 12ХН2600
Сталь 12ХНЗА700
Сталь 20Х2Н4А450
Сталь 20ХГСА650
Сталь 30ХГС360
Сталь 30ХГСА850
Сталь 38Х210700
Сталь 50ХФА1100
Сталь 60С21200
Сталь 60С2А1400
Сталь ШХ15380
Сталь 20Л215
Сталь 25Л235
Сталь 30Л255
Сталь 35Л275
Сталь 45Л315
Сталь 50Л335
Сталь 20ГЯ275
Сталь 35ГЛ295
Сталь 30ГСЛ345
Сталь 40ХЛ490
Сталь 35ХГСЛ345
Сталь 35ХМЛ390
Сталь 12Х13350
Сталь 12Х14Н14В2М260
Сталь Х23Н13295
Сталь Х23Н18200
Сталь 12Х18Н10Т200
Сталь 08Х18Н10Т210

На этой странице представлена подробная таблица пределов текучести различных марок сталей. Таблица периодически пополняется новыми данными.

Значение некоторых употребляемых в данной статье понятий и определений приводится отдельно.

Геометрические характеристики рассматриваемого тела, уравнения равновесия и метод сечений позволяют определить значение напряжений в любой точке рассматриваемого сечения. Соответственно суть расчета на прочность сводится к тому, что напряжение σ в наиболее нагруженной точке (на некоторой элементарной площади) должно быть меньше или равно сопротивлению материала:

σ ≤ R (318.1)

Сопротивление материала, обозначаемое литерой «R» – это способность материала выдерживать прикладываемые к телу нагрузки без разрушения материала. Между тем сопротивление того или иного материала зависит от множества различных факторов, теоретическое обоснование и учет которых является достаточно сложной задачей. В связи с этим сопротивление различных материалов определяется опытным путем.

Диаграммы напряжений

На сегодняшний день существует несколько методик испытания образцов материалов. При этом одним из самых простых и показательных являются испытания на растяжение (на разрыв), позволяющие определить предел пропорциональности, предел текучести, модуль упругости и другие важные характеристики материала. Так как важнейшей характеристикой напряженного состояния материала является деформация, то определение значения деформации при известных размерах образца и действующих на образец нагрузок позволяет установить вышеуказанные характеристики материала.

Тут может возникнуть вопрос: почему нельзя просто определить сопротивление материала? Дело в том, что абсолютно упругие материалы, разрушающиеся только после преодоления некоторого предела – сопротивления, существуют только в теории. В реальности большинство материалов обладают как упругими так и пластическими свойствами, что это за свойства, рассмотрим ниже на примере металлов.

Испытания металлов на растяжение проводятся согласно ГОСТ 1497-84. Для этого используются стандартные образцы. Методика испытаний выглядит приблизительно так: к образцу прикладывается статическая нагрузка, определяется абсолютное удлинение образца Δl, затем нагрузка увеличивается на некоторое шаговое значение и снова определяется абсолютное удлинение образца и так далее. На основании полученных данных строится график зависимости удлинений от нагрузки. Этот график называется диаграммой напряжений.

Рисунок 318.1. Диаграмма напряжений для стального образца.

На данной диаграмме мы видим 5 характерных точек:

Предел пропорциональности Рп (точка А)

Нормальные напряжения в поперечном сечении образца при достижении предела пропорциональности будут равны:

Предел пропорциональности ограничивает участок упругих деформаций на диаграмме. На этом участке деформации прямо пропорциональны напряжениям, что выражается законом Гука:

Рп = kΔl (318.2.2)

где k – коэффициент жесткости:

k = EF/l (318.2.3)

где l – длина образца, F – площадь сечения, Е – модуль Юнга.

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ.

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.

Модули упругости

Главными характеристиками упругих свойств материалов являются модуль Юнга Е (модуль упругости первого рода, модуль упругости при растяжении), модуль упругости второго рода G (модуль упругости при сдвиге) и коэффициент Пуассона μ (коэффициент поперечной деформации).

Модуль Юнга Е показывает отношение нормальных напряжений к относительным деформациям в пределах пропорциональности

Модуль Юнга также определяется опытным путем при испытании стандарт­ных образцов на растяжение. Так как нормальные напряжения в материале равны силе, деленной на начальную площадь сечения:

σ = Р/Fо (318.3.1), (317.2)

а относительное удлинение ε – отношению абсолютной деформации к начальной длине

то модуль Юнга согласно закону Гука можно выразить так

Рисунок 318.2. Диаграммы напряжений некоторых сплавов металлов

Коэффициент Пуассона μ показывает отношение поперечных деформаций к продольным

Под воздействием нагрузок не только увеличивается длина образца, но и уменьшается площадь рассматриваемого поперечного сечения (если предположить, что объем материала в области упругих деформаций остается постоянным, то значит увеличение длины образца приводит к уменьшению площади сечения). Для образца, имеющего круглое сечение, изменение площади сечения можно выразить так:

Тогда коэффициент Пуассона можно выразить следующим уравнением:

Модуль сдвига G показывает отношение касательных напряжений т к углу сдвига

Модуль сдвига G может быть определен опытным путем при испытании образцов на кручение.

При угловых деформациях рассматриваемое сечение перемещается не линейно, а под некоторым углом – углом сдвига γ к начальному сечению. Так как касательные напряжения равны силе, деленной на площадь в плоскости которой действует сила:

т = Р/F (318.3.6)

а тангенс угла наклона можно выразить отношением абсолютной деформации Δl к расстоянию h от места фиксации абсолютной деформации до точки, относительно которой осуществлялся поворот:

tgγ = Δl/h (318.3.7)

то при малых значениях угла сдвига модуль сдвига можно выразить следующим уравнением:

G = т/γ = Ph/FΔl (318.3.8)

Модуль Юнга, модуль сдвига и коэффициент Пуассона связаны между собой следующим отношением:

Е = 2(1 + μ)G (318.3.9)

Значения постоянных Е, G и µ приводятся в таблице 318.1

Таблица 318.1. Ориентировочные значения упругих характеристик некоторых материалов

Примечание: Модули упругости являются постоянными величинами, однако технологии изготовления различных строительных материалов меняются и более точные значения модулей упругости следует уточнять по действующим в настоящий момент нормативным документам. Модули упругости бетона зависят от класса бетона и потому здесь не приводятся.

Упругие характеристики определяются для различных материалов в пределах упругих деформаций, ограниченных на диаграмме напряжений точкой А. Между тем на диаграмме напряжений можно выделить еще несколько точек:

Что такое условный предел текучести?

Давайте разберемся, что же это за параметр. В тех случаях, когда диаграмма напряжений не имеет выраженных площадок, требуется определять условный ПТ. Итак, это значение напряжения, при котором относительная остаточная деформация равна 0,2 процента. Для его вычисления на диаграмме напряжений по оси определения ε необходимо отложить величину, равную 0,2. От этой точки проводится прямая, параллельная начальному участку. В результате точка пересечения прямой с линией диаграммы определяет значение условного предела текучести для конкретного материала. Также данный параметр называют техническим ПТ. Кроме того, отдельно выделяют условные пределы текучести при кручении и изгибе.

Работа деформации

Прочность материала тем выше, чем больше внутренние силы взаимодействия частиц материала. Поэтому величина сопротивления удлинению, отнесенная к единице объема материала, может служить характеристикой его прочности. В этом случае предел прочности не является исчерпывающей характеристикой прочностных свойств данного материала, так как он характеризует только поперечные сечения. При разрыве разрушаются взаимосвязи по всей площади сечения, а при сдвигах, которые происходят при всякой пластической деформации, разрушаются только местные взаимосвязи. На разрушение этих связей затрачивается определенная работа внутренних сил взаимодействия, которая равна работе внешних сил, затрачиваемой на перемещения:

А = РΔl/2 (318.4.1)

где 1/2 – результат статического действия нагрузки, возрастающей от 0 до Р в момент ее приложения (среднее значение (0 + Р)/2)

При упругой деформации работа сил определяется площадью треугольника ОАВ (см. рис. 318.1). Полная работа, затраченная на деформацию образца и его разрушение:

А = ηРмаксΔlмакс (318.4.2)

где η – коэффициент полноты диаграммы, равный отношению площади всей диаграммы, ограниченной кривой АМ и прямыми ОА, MN и ON, к площади прямоугольника со сторонами 0Рмакс (по оси Р) и Δlмакс (пунктир на рис. 318.1). При этом надо вычесть работу, определяемую площадью треугольника MNL (относящуюся к упругим деформациям).

Работа, затрачиваемая на пластические деформации и разрушение образца, является одной из важных характеристик материала, определяющих степень его хрупкости.

мтомд.инфо

Раздел:Материаловедение. Металловедение.

Основными механическими свойствами являются прочность, упругость, вязкость, твердость. Зная механические свойства, конструктор обоснованно выбирает соответствующий материал, обеспечивающий надежность и долговечность конструкций при их минимальной массе. Механические свойства определяют поведение материала при деформации и разрушении от действия внешних нагрузок.

В зависимости от условий нагружения механические свойства могут определяться при:

  1. Статическом нагружении – нагрузка на образец возрастает медленно и плавно.
  2. Динамическом нагружении – нагрузка возрастает с большой скоростью, имеет ударный характер.
  3. Повторно, переменном или циклическим нагружении – нагрузка в процессе испытания многократно изменяется по величине или по величине и направлению.

Деформация сжатия

Деформации сжатия подобны деформациям растяжения: сначала происходят упругие деформации, к которым за пределом упругости добавляются пластические. Характер деформации и разрушения при сжатии показан на рис. 318.5:

Рисунок 318.5

а – для пластических материалов; б – для хрупких материалов ; в – для дерева вдоль волокон, г – для дерева поперек волокон.

Испытания на сжатие менее удобны для определения механических свойств пластических материалов из-за трудности фиксирования момента разрушения. Методы механических испытаний металлов регламентируются ГОСТ 25.503-97. При испытании на сжатие формы образца и его размеры могут быть различными. Ориентировочные значения пределов прочности для различных материалов приведены в таблицах 318.2 – 318.5.

Если материал находится под нагрузкой при постоянном напряжении, то к практически мгновенной упругой деформации постепенно прибавляется добавочная упругая деформация. При полном снятии нагрузки упругая деформация уменьшается пропорционально уменьшающимся напряжениям, а добавочная упругая деформация исчезает медленнее.

Образовавшаяся добавочная упругая деформация при постоянном напряжении, которая исчезает не сразу после разгрузки, называется упругим последействием.

Предел прочности

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].

МЕТОДЫ ОТБОРА ОБРАЗЦОВ

1. МЕТОДЫ ОТБОРА ОБРАЗЦОВ

(Измененная редакция, Изм. N 2).

1.2. Допускается перед испытанием проводить правку образца плавным давлением на него или легкими ударами молотка по образцу, лежащему на подкладке. Подкладка и молоток должны быть из более мягкого материала, чем образец.

Недопустимость правки образцов должна быть оговорена в НТД на арматурную сталь.

где – масса испытуемого образца, кг;

– длина испытуемого образца, м;

– плотность стали, 7850 кг/м .

1.5. Для обточенных и круглых образцов арматуры номинальным диаметром от 3,0 до 40,0 мм определяют площадь поперечного сечения измерением диаметра по длине образца в трех сечениях: в середине и по концам рабочей длины; в каждом сечении в двух взаимно перпендикулярных направлениях. Площадь поперечного сечения образца вычисляют как среднеарифметическое значение этих шести измерений.

1.6. Площадь поперечного сечения каната определяют как сумму площадей поперечного сечения отдельных проволок, составляющих канат.

Допускается использовать номинальную площадь сечения канатов, указанную в нормативно-технической документации на канаты.

(Измененная редакция, Изм. N 1).

1.7. Начальную расчетную длину измеряют с погрешностью не более 0,5 мм.

1.8. Диаметры круглых и обточенных образцов арматуры номинальным диаметром от 3,0 до 40,0 мм измеряют штангенциркулем по ГОСТ 166 или микрометром по ГОСТ 6507.

1.9. Массу испытуемых образцов арматуры периодического профиля номинальным диаметром менее 10 мм определяют с погрешностью не более 1,0 г, образцов арматуры диаметром от 10 до 20 мм – с погрешностью не более 2,0 г, а образцов диаметром более 20 мм – с погрешностью не более 1% от массы образца.

Образцы арматурной стали взвешивают на весах по ГОСТ 29329*, а длину образца измеряют металлической линейкой по ГОСТ 427. _______________ * На территории Российской Федерации документ не действует. Действует ГОСТ Р 53228-2008. – Примечание изготовителя базы данных.

Арматурная сталь

Основными показателями свойств арматурной стали являются:

  1. Предел текучести (физический) σу, МПа.
  2. Для сталей, не имеющих физического предела текучести, определяется предел текучести (условный) σ0,2, МПа — напряже­ние, при котором остаточное удлинение достигает 0,2% от длины участка образца. Определяют его тогда, когда при растяжении об­разца не обнаруживается ярко выраженного предела текучести (твердые стали).
  3. Временное сопротивление (предел прочности) σи, МПа.
  4. Относительное удлинение после разрыва ε — процентное отношение длины образца после разрыва к его первоначальной длине.

Проводя испытание образца, нагрузку на него увеличивают по­степенно, ступенями. Начальную ступень нагружения следует при­нимать 5-10% от ожидаемой максимальной нагрузки. Каждая сту­пень должна составлять не более 20% от нормативной нагрузки. В конце каждой ступени увеличение нагрузки на образец приостанавливают. Под действием этой нагрузки образец находится не ме­нее 10 мин. Доведя нагрузку до нормативного значения, образец вы­держивается 30 мин. Эти выдержки необходимы для выяснения закономерности приращения перемещений и деформаций.

После достижения нагрузкой полуторной величины норматив­ного значения, дальнейшее увеличение ведут ступенями вдвое мень­шими, давая после каждой ступени выдержку не менее 15 мин. Та­кой порядок дает возможность более точно установить величину предельной (разрушающей) нагрузки.

Деформации рекомендуется замерять приборами до достиже­ния нагрузкой величины не более чем 1,25 от нормативной величи­ны. После этого приборы снимаются. Это делается с целью избежа­ния порчи приборов.

Начальная расчетная длина цилиндрических образцов из не­обработанной арматурной стали назначается равной десяти началь­ным (до испытания) диаметрам арматурного стержня.

Измерение начальной и конечной (длина расчетной части пос­ле разрыва образца) расчетных длин, а также диаметра необрабо­танного образца производится с точностью 0,1 мм. До появления деформации образца перемещение подвижного захвата происходит без нарастания или с небольшим увеличением нагрузки, которая необходима для устранения зазора как в механизме машины, так и между образцами и захватами. Поэтому на диаграмме в самом на­чале испытания появляется сначала горизонтальный, а затем кри­волинейный участок. При начальной нагрузке, составляющей 10% от разрывного усилия, на образец наносят две риски. Расстояние между рисками является начальной расчетной длиной образца.

В продолжение всего испытания ведется наблюдение за пове­дением образца по диаграмме, вычерчиваемой записывающим при­бором разрывной машины.

По оси ординат диаграммы откладываются напряжения σ, а по оси абсцисс относительные деформации образца ε, представ­ляющие отношение удлинения образца к его первоначальной дли­не (рис. ниже). Криволинейный участок в начале диаграммы рас­сматривать не следует, поэтому продолжаем прямолинейный от­резок диаграммы до оси абсцисс и получаем точку О — начало диаграммы.

На диаграмме (рис. ниже) можно выделить три участка работы стали: 1 — участок упругой работы; 2 — участок пластической ра­боты; 3 — участок упруго-пластической работы. В большинстве простейших расчетов считается, что сталь работает в пределах пер­вого участка упруго, т. е. напряжения в элементах ограничиваются пределом текучести — σу. Соответственно, нормативные и расчет­ные сопротивления, необходимые для расчета конструкций, прини­маются по пределу текучести.

АППАРАТУРА

2.1. Применяют машины всех систем при условии их соответствия требованиям настоящего стандарта и ГОСТ 1497.

2.2. При проведении испытаний должны соблюдаться требования:

надежное центрирование образца;

плавность нагружения;

средняя скорость нагружения при испытании до предела текучести не должна быть более 10 Н/мм (1 кгс/мм ) в секунду; за пределом текучести скорость нагружения может быть увеличена так, чтобы скорость перемещения подвижного захвата машины не превышала 0,1 рабочей длины испытуемого образца в минуту; шкала силоизмерителя испытательной машины не должна превышать пятикратного ожидаемого значения наибольшей нагрузки для испытуемого образца арматуры;

конструкция захватов испытательной машины должна исключать возможность поворота концов каната вокруг оси образца.

2.3. Измерительные приборы должны соответствовать требованиям настоящего стандарта и другой НТД.

Предел выносливости, предел усталости

– наибольшая величина напряжения цикла, при которой ещё не происходит усталостное разрушение при заданном большом числе циклов нагружения (например, 10 6 , 10 7 , 10 8 ). Механическая характеристика материала, характеризующая усталостную прочность. Определяется усталостными испытаниями идентичных образцов при постоянном значении коэффициента асимметрии и различных значениях максимального напряжения цикла. Обозначается σr, где r – коэффициент асимметрии цикла. Предел выносливости (усталости) для симметричного цикла нагружения обозначается σ-1, для пульсационного – σ, и т. д.

♦ Преде́л выно́сливости ♦ Преде́л уста́лости

Предел длительной прочности

– условное напряжение, определяемое как отношение нагрузки, при которой разрушается образец через определённый промежуток времени, к первоначальной площади поперечного сечения. Механическая характеристика конструкционных материалов, применяемая в основном для оценки их свойств при высоких температурах. Обозначается предел длительной прочности σдл, σвt или 900 σ1000, где нижний индекс указывает время испытания, а верхний – температуру.

♦ Преде́л дли́тельной про́чности

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]