Технология и основные методы катодной защиты от коррозии


Для металлических листов и деталей применяют разные технологии антикоррозийной защиты. Большое распространение получила катодная защита от коррозии. Этот способ обладает рядом характерных особенностей, а чаще всего катодную защиту применяют для крупных объектов. Это могут быть трубы, автомобили, металлические свайные конструкции, морские судна. Как именно происходит защита трубопроводов от коррозии на физическом и химическом уровне?

Основные технологии катодной защиты

Катодная защита — это специальный метод электрохимической защиты металлических объектов от ржавления и коррозии. Главный принцип заключается в том, что на защищаемый металлический объект накладывается отрицательный потенциал электрического тока. Это позволяет минимизировать контакт металла с внешними ионами и веществами, обладающими электрическим зарядом. Технология была разработана примерно 200 лет назад британским ученым Гемфри Дэви. Для подтверждения своей теории он составил несколько докладов, которые были переданы правительству. На основании этих докладов было произведена первая в мире катодная защита крупного промышленного корабля.

Антикоррозийная защита распространяется на различные объекты — трубопроводы, автомобили, дороги, самолеты и так далее. Обратите внимание, что тип металла значения не имеет — это может быть железо, медь, серебро, золото, алюминий, титан и любой другой металл, а также различные сплавы (с лигирующими добавками или без них). Одинаково успешно может выполняться защита от коррозии автомобиля, отдельных фрагментов труб, различных декоративных изделий сложной формы и так далее.

1 способ

Подключение детали к внешнему источнику электрического тока (обычно эту роль выполняются компактные подстанции). В случае применения технологии металлический объект выполняет функцию катода, а электрическая подстанция — функцию анода. Благодаря этому происходит сдвиг электрического потенциала, что позволяет защитить металлический объект от электрически активных частиц. Основные сферы применение данной технологии — защита трубопроводов, сварных конструкций, различных платформ, элементов дорожного покрытия и так далее. Эта технология является достаточно простой и универсальной, поэтому в мире она пользуется высокой популярностью. Ее главный минус — необходимость подключения защитного контура к внешнему источнику тока, что может быть неудобно в случае объектов, которые располагаются вдали от человеческой цивилизации (частично эта проблема решается за счет применения автономных источников энергии).

2 способ

Метод гальванической поляризации (технология гальванических анодов). Эта методика также является достаточно простой и интуитивно понятной: металлический объект присоединяется к другому, который обладает отрицательным зарядом (чаще всего этот элемент из легких металлов — из алюминия, цинка, магния). Технологию гальванической поляризации обычно применяют в тех случаях, когда на поверхности объекта есть защитный слой. Эта технология популярна в Америке, где есть большое количество малонаселенных пунктов и где наблюдается дефицит внешних источников энергии. Эксперты утверждают, что гальваническая поляризации могла бы стать очень популярной в России из-за особенностей нашей географии, если бы на отечественные трубопроводы наносилось защитное покрытие (при таком сценарии применение первой технологии было бы весьма затруднительно, что вынуждало бы людей искать альтернативу).

Конструкции катодных станций

Такое оборудование представлено на рынке в разных корпусах, формах и габаритах. Конечно, распространена и практика индивидуального проектирования таких систем, что позволяет не только получить оптимальную для конкретных нужд конструкцию, но и обеспечить необходимые эксплуатационные параметры.

Строгий расчет характеристик станции позволяет в дальнейшем оптимизировать затраты на ее установку, транспортировку и хранение. К примеру, для небольших объектов вполне подойдет катодная защита от коррозии трубопроводов на инверторной основе массой в 10-15 кг и мощностью 1,2 кВт. Оборудование с такими характеристиками можно обслужить и легковым автомобилем, однако для масштабных проектов могут применяться и более массивные и тяжелые станции, требующие подключения грузовой техники, подъемного крана и бригад монтажников.

Технология катодной поляризации

В данном случае используется так называемый наложенный ток. Для его подачи на металлический объект используется внешний проводник (часто) или источник тока (редко). При контакте с электрически активной частицей происходит следующее — частица под действием сил электрического притяжения перемещается к защитному элементу с отрицательным зарядом, где происходит «утилизация» этих частиц.

Последствия такой «утилизации» очевидны — защитный элемент со временем сам покрывается коррозией и приходит в негодность. Поэтому данную технологию очень часто называют методом жертвенного электрода (вместо нашей детали происходит ржавление «электрода-жертвы»).

Помимо силы тока и напряжения при работе с катодной поляризацией нужно учитывать еще один важный параметр — это омическое напряжение. В техническом смысле этот параметр отражает тот факт, что по мере протекания электрического заряда со временем напряжение тока в контуре падает. Само падение происходит из-за того, что протекание катодного тока происходит по контуру с более низким зарядом. В случае правильной сборки контура этот показатель является достаточно маленьким — благодаря этому в контуре будет всегда сохраняться один и тот же ток одинаковой мощности.

Электрохимическая коррозия от грунта

Вследствие разности напряжений, образовавшихся на отдельных участках трубопроводов, возникает поток электронов. Процесс образования ржавчины происходит по электрохимическому принципу. На основании этого эффекта часть металла в анодных зонах растрескивается и перетекает в основание почвы. После взаимодействия с электролитом образовывается коррозия.

Одним из значимых критериев для обеспечения защиты от негативных проявлений является длина магистрали. На пути попадаются почвы с разным составом и характеристикой. Все это способствует возникновению разности напряжений между частями проложенных трубопроводов. Магистрали обладают хорошей проводимостью, поэтому происходит образование гальванопар с достаточно большой протяженностью.

Путем проведения исследовательских работ установлена прямая зависимость между глубиной и площадью образованной ржавчины на металле. Это основано на том, что металл с большей площадью поверхности наиболее уязвим к внешним негативным проявлениям. К частным случаям можно отнести проявление на стальных сооружениях значительно меньших количеств разрушений под действием электрохимического процесса.

Агрессивность грунтов к металлу, прежде всего, определяется их собственной структурной составляющей, влажностью, сопротивлением, насыщенностью щелочами, воздушной проницаемостью и иными факторами. Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с проектом на строительство магистрали.

Технология создания станций защиты

Еще одной технологией создания катодной защиты является подключение элемента к внешним источникам тока. В большинстве случаев для этих целей сооружаются специальные станции катодной защиты (СКЗ), которые состоят из нескольких элементов — главный источник тока, анодное заземление, различные кабели и провода, соединяющие отдельные элементы конструкции и вспомогательные пункты с механическим или компьютерным управлением, которые позволяют контролировать параметры.

Чаще всего данная технология используется для объектов, расположенных рядом с проводами электропередач — это могут быть трубопроводы, различные фабричные постройки и так далее. СКЗ могут работать во многопоточном режиме — в таком случае они будут обслуживать сразу несколько защитных систем. На трубах большое распространение получила практика, при которой на трубы ставится несколько отдельных блоков для более эффективного распределения тока. Дело все в том, что в случае протяженных трубопроводов в местах подключения труб к источникам тока формируются специальные точки с повышенным уровнем напряжения электрического поля — из-за этого может происходить повреждение труб. Применение подобных блоков позволяет распределить электричество равномерно по всему защитному контуру.

Автоматизация

Контрольные пункты могут работать как в ручном, так и в автоматическое режиме:

  • В случае ручного управления изменение параметров напряжения регулируется оператором. На физическом уровне регуляция осуществляется путем переключения работы трансформатора. Регулируется работа обмотки, что позволяет менять параметры электрического тока.
  • В случае автоматического управления изменение параметров напряжения регулируется самим устройством на основе параметров, которые когда-то задал оператор. На физическом уровне управление осуществляется с помощью специальных полупроводников-тиристоров. Они включаются или выключаются при отклонении параметров электрического тока от заданных параметров.

Цинк: нам пора расстаться

Мы долгие годы использовали для защиты лодочных моторов и прочих металлических деталей аноды из цинка. Но доказательств долгосрочной токсичности этого металла всё больше. Альтернативные материалы для изготовления анодов дешевле, эффективнее и безопаснее. Но почему мы продолжаем его покупать?

…Многие не задумываются о жертвенных анодах — этих любопытных «нашлёпках» из металла, которые можно увидеть на валах, рулях, корпусе и прочих скрытых под водой элементах судна. Нам известно: аноды как-то по-особенному реагируют на воду и защищают важные детали от коррозии. Мы знаем также, что со временем они разрушаются и нуждаются в замене. Всё. Казалось бы, о чём здесь еще размышлять?

Может быть, всё же подумать..?

На самом деле аноды — крутые штуки. В результате естественных электрохимических реакций металлы корродируют в воде. Аноды изготовлены из сплавов с особенно привлекательным диапазоном электрохимического напряжения. Поэтому коррозионные реакции сосредотачиваются именно на элементах протекторной защиты, благополучно оставляя в покое соседние детали из металла. Это немного напоминает детский праздник, когда на стол одновременно подают торт и отварную брокколи. Сладкий десерт юные гости сразу уничтожают с аппетитом, а вот капуста остаётся нетронутой.

Такой простой подход с «подсовыванием» коррозии специальных элементов защиты одинаково хорош на совсем маленьких лодках, серьёзных яхтах, коммерческих судах и береговых сооружениях (шлюзовые ворота и доки).


Аноды-протекторы отличаются размерами, формами, методами крепления. Всё зависит от предназначения и особенностей эксплуатации.

Традиционно аноды изготавливались из цинка: настолько традиционно, что в англоязычных странах их и называют «цинки». Хотя это на самом деле эффективный материал, а для функционирования человеческого организма нужно немного соединений цинка, — в более высоких концентрациях он способен вызывать реальные проблемы. Длительное интенсивное влияние его соединений на растения, беспозвоночных, рыб воздействует как токсин. Ещё один недостаток цинковых анодов — то, что в их составе есть небольшое количество кадмия, который также может вызывать проблемы со здоровьем.

Эти данные вызывают неизбежную обеспокоенность. К примеру, южнее канадской границы, в американских штатах Калифорния и Мэрилэнд было предложено запретить использование традиционных анодов после того, как исследования выявили значительное повышение уровня содержания цинка в акваториях вблизи крупных пристаней. Так как в северной Канаде навигационный сезон короче, подобных призывов отказаться от цинка здесь не было. Однако многие считают это лишь вопросом времени: доказательств его опасности всё больше.

Альтернативы

К счастью, цинк не единственный и оптимальный выбор, когда речь идёт о защите наших лодок. Существуют нетоксичные альтернативы!

Начнём с алюминия. Такие аноды имеют многочисленные преимущества перед цинком, начиная с гораздо более высокой эффективности. Более того: превосходство алюминия над цинком как анодного материала настолько подавляющее, что он занял первое место в мире среди производителей лодочных моторов.

«Все компании, производящие двигатели для лодок и катеров, теперь устанавливают на свою продукцию аноды из алюминия», — говорит Майкл Швез, представитель канадской компании Canada Metal Pacific (CMP), выпускающей протекторную защиту. Он знает, что говорит, поскольку Canada Metal Pacific поставляет аноды практически для всех крупных производителей судовых двигателей. «Mercury, BRP, Honda, Suzuki, Yamaha, Volvo Penta — все используют алюминий. И, безусловно, это наиболее эффективный анодный материал из ныне существующих».

Главное преимущество перед привычным цинком в том, что современные алюминиевые сплавы лучше «концентрируют» коррозию на себе. Кроме того, они заметно легче и совершенно нетоксичны. И у этой медали нет другой стороны, именно поэтому защита из алюминия считается продуктом премиум-класса в сравнении с давно знакомыми цинковыми протекторами. Ирония судьбы в том, что увеличение срока службы новых анодов вызывает сомнения у пользователей: «Яхтсмены и водномоторники смотрят на анод, который разрушается медленнее, чем цинковый, и делают вывод — оно не работает!» — такое наблюдение сделал Майкл Швез. — «Видимо, мы не очень хорошо объясняли, что алюминий просто служит значительно дольше!».

Также стоит объяснять клиентам: не все алюминиевые аноды одинаковы. Лучшие сделаны из первичного металла либо отлиты из высококачественных сплавов (ранее использовавшихся, к примеру, в качестве высоковольтных линиях электропередач или как материал для прецизионного оборудования). «Одно дело — перепрофилировать сплав премиум-класса, и совсем другое — переплавка низкосортного лома», — поясняют эксперты. — «Звучит невероятно, но существуют нечестные поставщики. Они скупают на верфях использованные аноды, а потом продают их обратно судовладельцам. До следующей проверки никто ничего и не узнает, а потом начнут искать козла отпущения».

Canada Metal Pacific продает анодную защиту покупателям во всём мире, в том числе и военным. Поэтому, говорит Швез, «CMP придерживается строгой системы управления качеством ISO 9001, а наши сплавы постоянно проходят химические испытания. Именно поэтому они отвечают самым строгим техническим требованиям. Без сторонней сертификации качества как вы знаете, что получите в результате?»

Такое же внимание Canada Metal Pacific уделяет качеству магниевых анодов: это ещё более эффективный способ защиты для катеров и лодок, используемых исключительно в пресной воде. Магниевые сплавы славятся чрезвычайно активным диапазоном электрохимического напряжения: это делает их отличными «защитниками», превосходящими и цинк, и даже алюминий.

«В пресной воде никакой материал не сравнится с магнием», — о.

И алюминий, и магний не только превосходят по эффективности традиционные «цинки», но ещё и дешевле. Стоимость цинка за последние 4–5 лет увеличилась вдвое. Кроме того, это тяжёлый материал, поэтому тарифы на доставку велики, да и хранить его на складе тоже непросто. Конечно, такие расходы можно было бы оправдать, будь это премиальный продукт. Но алюминий и магний — гораздо лучше и оба дешевле.

Итак, нетоксичные альтернативы работают лучше, чем цинк; дольше, чем цинк и стоят меньше, чем цинк? Почему мы продолжаем жить по-старому?

Выходя на мировой уровень

Швез отметил: хотя Canada Metal Pacific давно продаёт нетоксичные аноды, доля цинка по-прежнему составляет около 60% от общего объёма реализации. Чтобы изменить ситуацию, компания разработала новую упаковку, которая доходчивее доносит преимущества альтернативных магния и алюминия. Производители также активно работают с дистрибьюторской сетью, чтобы выйти на мировой уровень.

«Мы должны дать людям понять: для цинка есть замена, которая служит лучше и стоит меньше», — говорит Швец. — «Сегодня яхтсмен в отделе запчастей просит «новые цинки» и покупает их. Наша задача: изменить это и дать людям информацию о новой протекторной защите».

Перевод статьи Craig Ritchie.

Особенности катодной защиты труб

Коррозия в трубопроводах обычно возникает из-за различных дефектов и повреждений труб — разрывы, растрескивание, появление щелей и так далее. Из-за коррозии нарушается герметизация труб, что может привести к полной или частичной поломке трубопровода. Особенно остро эта проблема стоит для подземных трубопроводов. При расположении труб под землей создаются участки с разным электрическим потенциалом. Это связано с неоднородностью грунта и наличия в земли различного мусора неорганического происхождения. При наличии серьезной разности потенциалов отрицательно заряженные ионы в земле начинают вступать в реакцию в металлом. Это приводит к коррозии, которая быстро разрушает трубопровод.

Электрический потенциал

Катодная защита трубопроводов от коррозии осуществляется по двум стандартным схемам. С помощью катодной поляризации и с помощью создания внешних станций. Защита трубопроводов должна быть направлена в первую очередь на снижения скорости разрушения материала трубы. Делается это с помощью уменьшения электрического потенциала трубы в сравнении с электрическим потенциалом грунта:

  • Электрический потенциал большинства современных труб составляет приблизительно 0,8-0,9 вольт.
  • Экспериментальным путем было показано, что основные породы грунта обладают потенциалом приблизительно 0,5-0,6 вольт.

Для уравнения электрических потенциалов необходимо снизить потенциал труб всего на 0,3-0,4 вольт. Это позволяет практически полностью остановить появление ржавчины. В случае правильного проведения работ скорость естественного ржавления составит менее 1 мм в год.

Выбор способа

Для труб подходит технология создания внешних станций защиты. В качестве источников питания в данном случае используют воздушные электролинии с напряжением от 500 до 10000 вольт. Чем больше напряжение, тем больше труб можно обслужить. Иногда таких линий нет на том или ином участке. В таком случае имеет смысл монтаж различных генераторов.

У технологии внешних станций есть один крупный недостаток. Для создания защиты придется проводить трудоемкие и сложные работы. Это значительно увеличивает стоимость создания трубопровода. При работе с большим напряжением в точке подачи электричества может создаваться избыточное электрическое напряжение — из-за этого может возникнуть водородное растрескивание труб, поэтому при проведении монтажных работ разводку электричества нужно производить аккуратно.

Вместо технологии защитных станций можно использовать методику применения гальванических анодов для создания эффекта поляризации. Эта технология подходит для грунтов с малым удельным сопротивлением (до 50 Ом на 1 кв. м). Если же удельное сопротивление грунта будет очень большим, то технология применения гальванических анодов является практически бесполезной в связи с ее малой эффективностью.

Катодная защита от коррозии своими руками для авто в гараже

Для автомобиля, который неподвижно хранится в гараже, организовать своими руками электрохимический заслон очень просто. Как уже говорилось выше, в качестве катода выступает сама машина. Анодом может быть назначено само здание гаража, если он сделан из металла. Либо это может быть заземляющий контур, если гараж неметаллический, или машина стоит на стоянке. Металлический пол или открытые участки из металла снизу будут препятствовать появлению ржавчины на днище машины.

Заземляющий контур создаётся таким образом — вокруг машины забиваем в землю 4 металлических штыря. Их длина должна быть не менее 1 метра. Натягиваем вокруг этих штырей металлическую проволоку. Контур готов — в отличие от металлического здания он будет взаимодействовать только с днищем вашего авто.

Подключение контура или гаража выполняем через резистор — коммутируем его с положительным разъёмом автомобильного аккумулятора.


Подключаем контур через резистор к аккумулятору

Особенности катодной защиты автомобилей

Коррозия на автомобилях часто появляется внезапно. Скорость её распространения очень высокая, поскольку у авто есть большое количество подвижных элементов. Во время эксплуатации в таких элементах могут образовываться различные маленькие трещины и вмятины. Это значительно увеличивает риск появления коррозии. Катодная защита автомобиля от коррозии обычно осуществляется путем перераспределения электрического потенциала.

Обычно используются специальные электронные модули, которые имеют компактные размеры и монтируются внутри автомобиля. Монтаж подобных блоков занимает не более 20 минут.

Дополнительная обработка

Также стоит обратить внимание, что метод катодной защиты обычно комбинируется с другими техниками:

  • Все основные детали автомобиля покрываются специальными красками и мастиками. Они создают на поверхности металла защитный слой. Этот слой обладает электрической нейтральностью. Поэтому при контакте с электрически активными веществами или ионами ржавление не происходит.
  • Некоторые элементы автомобиля могут покрываться защитными катодными пластинами, которые также минимизируют риск появления ржавчины. Пластинами обычно покрывают подвижные части, которые растрескиваются и повреждаются чаще всего. Это днище автомобиля, арки задних колес, фары, внутренние поверхности дверей и так далее.

Причины коррозии

Сети трубопроводов систем жизнеобеспечения распространены по всей территории России. С их помощью эффективно транспортируется газ, вода, нефтепродукты и нефть. Не так давно был проложен трубопроводов для транспортировки аммиака. Большинство видов трубопроводов выполнены из металла, а главный их враг – это коррозия, видов которой имеется много.

Причины образования ржавчины на металлических поверхностях основаны на свойствах окружающей среды, как наружной, так и внутренней коррозии трубопроводов. Опасность образования коррозии для внутренних поверхностей основана на:

  1. Взаимодействии с водой.
  2. Наличии в воде щелочей, солей или кислот.

Такие обстоятельства могут сложиться на магистральных водопроводах, системах горячего водоснабжения (ГВС), пара и отопления. Не менее важным фактором является способ прокладки трубопровода: наземный или подземный. Первый проще обслуживать и устранять причины образования ржавчины, по сравнению со вторым.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]