Чем покрыть металл, чтобы не ржавел: лучшие спреи, растворы и составы

Пожалуй каждый человек сталкивался в своем быту с появлением ржавчины на металлических деталях. И неважно, где возникала коррозия, на частях машины или железном заборе, это всегда неприятно. Но к счастью, современная химическая промышленность предлагает множество средств, которые не дадут появиться ей снова. О лучших из них мы расскажем в нашем обзоре и вопрос чем покрыть металл чтобы не ржавел, больше не будет вас беспокоить.


Ряд составов можно наносить прямо на ржавчину Источник gidpokraske.ru

Самые распространенные способы борьбы с коррозией

Известно несколько способов покрытия металлических поверхностей, чтобы они не ржавели. Эти методы позволят надолго продлить срок использования предметов и деталей из железа. Одним из самых эффективных приемов считается обработка с помощью веществ на химической основе.

В эту категорию составов входят ингибиторы. Они наносятся на металл едва заметным тонким слоем. Благодаря такому покрытию изделие не будет ржаветь. Чаще всего подобные средства применяют в целях профилактики. Также, предотвратить коррозию помогут следующие способы:

  • удаление ржавых мест на деталях механическим путем;
  • использование средств на химической основе;
  • применение антикоррозионных составов;
  • народные рецепты.


Средства для обработки металлических поверхностей от ржавчины Источник a.d-cd.net
Более подробно о всех методиках по предотвращению появления ржавчины на металле рассказано ниже.

Очистка механическим путем

Используйте абразивную шкурку с крупнозернистой поверхностью или специальную щетку для работы по металлу, чтобы очистить железные детали от коррозии. Провести обработку можно мокрым или сухим методом. В последнем случае ржавчина соскабливается с помощью трения щетки или шкурки о металл.

Что касается мокрого способа, необходимо предварительно смочить поверхность деталей в керосине или уайт-спирите. На помощь придут и пескоструйный аппарат, шлифовальная машинка, болгарка или электродрель с металлической щеткой в виде насадки.

Очищение поверхности от коррозии можно применять только на не очень больших площадях металлических изделий. Наиболее оптимальным вариантом считается использование пескоструйного аппарата. Но его высокая цена может стать препятствием для домашнего мастера.


Механическая очистка используется на небольших металлических поверхностях Источник kraski-net.ru

Использование химических веществ

Если возник вопрос, чем покрыть металл от ржавчины, то в первую очередь специалисты рекомендуют обратиться к помощи химических средств. Известны два типа таких препаратов: преобразователи ржавчины и кислотные составы. Из последних самыми популярными считаются ортофосфорные. Они помогают очистить поверхность за считанные минуты. Использовать кислоту несложно, для этого снимите загрязнения с железной поверхности тряпкой, затем удалите влагу и нанесите средство на металл едва заметным слоем. Используйте кисть с силиконовой щетиной.

Оставьте кислотный состав на полчаса на поверхности. За это время произойдет реакция с поврежденным коррозией местом. Очистите металл влажной тряпкой, а затем сухой, до тех пор, пока не будут удалены все остатки ржавчины. Помните о технике безопасности при работе с антикоррозийными составами на основе кислоты. Используйте маску, специальные очки и перчатки для защиты дыхательных путей, глаз и кожи на руках. Очистители, в составе которых присутствует ортофосфорная кислота деликатно убирают следы коррозии с металлических деталей и при этом не дают появиться ей снова.


Используйте перчатки для защиты кожи от воздействия антикоррозионных средств Источник foods-ideas.com

Что касается преобразователей ржавчины, то ми покрывают всю площадь металлических деталей. Такой состав создает защиту, которая не даст появиться коррозии в будущем. Самыми популярными преобразователями сегодня считаются следующие:

  • «Цинкор». Состав образует тонкий слой на металлических предметах. Кроме того, этот состав восстанавливает поверхность железных предметов.
  • «ВСН-1». Служит нейтрализатором коррозии на маленьких участках. После нанесения превращается в пленку серого цвета, от которой легко избавиться с помощью сухой тряпки.
  • «В-52». Этот уничтожитель коррозии удаляет ее с любых металлических поверхностей, не растекается во время использования, и при этом действует очень быстро.
  • Berner. Этот модификатор ржавчины используется для гаек, болтов и других небольших деталей, которые не получается демонтировать из-за коррозии.
  • «СФ-1». Можно применять на деталях из алюминия, цинка или чугуна. Убирает коррозию и не дает появиться ей снова. Производитель гарантирует, что после обработки этим средством можно забыть о появлении ржавчины на 8-10 лет.

Все перечисленные препараты экономично расходуются.


Модификатор ржавчины «Фосфомет» Источник prom.st

Смотрите также: Каталог компаний, что специализируются на лакокрасочных материалах и сопутствующих работах

Неметаллические покрытия

Неметаллические покрытия делятся на органические и неорганические. Их действие сводится к изоляции обработанных поверхностей от воздействия окружающей среды посредством создания тонкой инертной по отношению к агрессивным веществам пленки.

Среди неметаллических защитных покрытий выделяют полимерные и оксидные пленки, эмали, лаки, краски, пластмассы, резины.

Полимерные пленки

На сегодняшний день данный вид покрытий является наиболее популярной альтернативой лакокрасочным материалам, резинам, пластику и оцинковке. Обработанные поверхности приобретают эстетичный внешний вид, а также повышают электроизоляционные, высокотемпературные, противоизносные свойства и срок службы. Кроме этого стоимость нанесения полимерного покрытия достаточно низкая.

Нанесение происходит в три этапа: напыление, термообработка и отверждение.

В качестве напыляемых веществ выступают полиэстер, пластизоль, полиуретаны, поливинилдефторид. Наиболее популярен полиэстер, который широко применяется для обработки металлочерепицы и профнастила.

Полимерные антифрикционные покрытия

Антифрикционные покрытия (АФП) являются разновидностью полимерных покрытий металлов. По структуре эти материалы схожи с красками, где красящий пигмент заменен на высокодисперсные частицы твердых смазочных веществ, которые равномерно распределены в смеси растворителей и связующих веществ.

Основу полимерных покрытий может составлять дисульфид молибдена, графит, политетрафторэтилен (ПТФЭ) и другие вещества, которые равномерно распределены в среде полимерного связующего: эпоксидной смоле, титанате, полиуретане, акриловых, фенольных, полиамид-имидных и других специальных компонентов.

В качестве примера таких материалов рассмотрим полимерные покрытия MODENGY. Они применяются в средне- и тяжелонагруженных узлах трения скольжения (направляющие, зубчатые передачи, подшипники и т.д.), деталях двигателей внутреннего сгорания (юбки поршней, подшипники скольжения, дроссельная заслонка), резьбовых соединениях и крепеже, трубопроводной арматуре, пластиковых и металлических деталях автомобилей и других парах трения металл-металл, металл-резина, полимер-полимер, металл-полимер.

Применение полимерных покрытий во многих случаях позволяет полностью отказаться от масел и пластичных смазок, создав узел трения, не требующий обслуживания. Материалы наносятся однократно на весь срок службы детали, обеспечивая необходимую защиту и смазывание поверхностей.

Преимущества полимерных покрытий MODENGY:

  • Высокая несущая способность
  • Работоспособность в запыленной среде
  • Низкий коэффициент трения
  • Широкий диапазон рабочих температур
  • Высокая износостойкость, противозадирные и антикоррозионные свойства
  • Стойкость к воздействию кислот, щелочей, органических растворителей и других химикатов
  • Работоспособность в условиях радиации и вакуума
  • Тонкий слой покрытия практически не влияет на исходную точность размеров детали

Эмалирование

Эмаль представляет собой тонкое, похожее на стекло, покрытие на поверхности металла, которое получается благодаря высокотемпературной обработке стекловидного порошка. Данный порошок смешивается с водой до нужной консистенции и наносится на поверхность.

Далее производится локальный обжиг детали в печи или при помощи газовой или бензиновой горелки. В зависимости от вида и цвета эмали требуется разная температура обжига, которая составляет от +700 °C до +900 °C. После термообработки на поверхности образуется стекловидный слой, который обеспечивает защиту от коррозии. Следует помнить, что эмаль достаточно хрупкая и легко повреждается при механическом воздействии.

Оксидирование

Оксидирование – это окислительно-восстановительная реакция металла, которая возникает благодаря взаимодействию с кислородом, электролитом или специальными кислотно-щелочными составами. Результатом процесса является образование защитной пленки, которая увеличивает твердость поверхности, увеличивает срок службы деталей, улучшает приработку, снижает образование задиров.

Существует химическое, анодное, термическое, плазменное, лазерное (доступно только на промышленных предприятиях) оксидирование.

Покрытие лакокрасочными материалами, резиной, пластиком

Данные виды покрытий металлов хорошо известны каждому. Их основная задача – защита поверхностей от коррозии и воздействия агрессивных сред. Как правило, у таких покрытий ограниченный функционал в плане термостойкости и износостойкости. Их очень легко повредить.

Основным преимуществом данных покрытий является низкая стоимость и достаточно простая технология нанесения. Достаточно провести тщательную подготовку поверхности и придерживаться рекомендаций по нанесению используемого материала.

Срок службы данных покрытий очень зависит от условий эксплуатации деталей, поэтому их не применяют в условиях высоких нагрузок и температур. Чаще всего их используют в качестве декоративного слоя.

Другие средства

Кроме того, популярностью среди домашних мастеров пользуются и другие средства, помогающие бороться с появлением ржавчины на металле. Среди них:

  • Hi-Gear No-Rust;
  • Permatex Rust Treatment;
  • Autoprofi.

Ниже описано, чем покрыть железо чтобы не ржавело, как использовать эти препараты и чем они отличаются друг от друга.

Hi-Gear No-Rust

Этот аэрозоль имеет экономичный расход и способствует увеличению адгезионных способностей материалов благодаря образованию защитной пленки на металле. Используйте этот антикоррозийный состав при температуре от 5 до 30 градусов тепла. Средство подходит для обработки деталей строительных конструкций, а также автомобильных кузовов.


Преобразователь ржавчины Hi-Gear No-Rust подойдет даже для самых застарелых пятен Источник prosmazku.info

У препарата следующая схема применения:

  1. Перед использованием спрея очистите поверхность любым способом (например, наждачной бумагой или металлической щеткой).
  2. Промойте детали водой и просушите сухой тряпкой.
  3. Хорошо встряхните флакон. Распылите преобразователь ржавчины равномерно по всему обрабатываемому участку железа. Рекомендуемое расстояние 15-30 см.

Методы нанесения металлических и окисных покрытий на металлическую основу.

Существует несколько методов нанесения металли­ческих покрытий на металлическую поверхность деталей; горячим методом (погружения в расплав), термомеханическим методом (плакированием), напылением, гальваническим и химическим методами.

Горячим методом наносят пленку, погружая деталь в ванну с расплавленным металлом. В этом случае используют металлы с низкой температурой плавления, например олово и свинец. Горячим способом наносят покрытия на готовые изделия. В авиаконструкциях чаще всего этот метод применяют для лужения электропроводов. Существенный недостаток этого метода — невозможность получения гарантированной толщины покрытия, а также большой расход наносимого металла.

Термомеханический метод (плакирование) используют для защиты коррозии основного металла или сплава другим металлом или сплавом, достаточно устойчивым к воздействию окружающей среды. Соединение металлов покрытия и основы получают прокаткой. На основной лист (или другой вид проката) металла накладывают тонкий лист защитного металла и в горячем состоянии осуществляют прокатку с помощью валков. В этом случае образуется очень прочное соединение ‘ двух металлов за счет взаимной диффузии. В авиаконструкциях часто применяют плакирование технически чистым алюминием. На нем образуется защитная окисная пленка, предохраняющая основной металл от коррозии. Толщина плакирующего слоя колеблется от 3% и выше толщины защищаемого металла. В авиастроении применяют плакированные листы и ленты.

Напыление (металлизация) — процесс нанесения расплавленного металла на поверхность изделия. Он может осуществляться сжатым воздухом или инертным газом. Сущность метода с использованием сжатого воздуха состоит в том, что частицы расплавленного металла, двигаясь большой скоростью, вместе с воздушным потоком ударяются о поверхность защищаемого металла, сцепляются с ней, образуя металлическое покрытие. В электрометаллизаторе (рис. 4) с помощью специального устройства подается проволока 2 к соплу корпуса 1,где электрической дугой 3 проволока расплавляется и капли распылен­ного металла подхватываются струей сжатого воздуха, проходящего по направляющей трубке 4. Не успевшие застыть капли жидкого металла прилипают к поверхности металлизируемой детали. У этого метода имеются два существенных недостатка. Во-первых, покрытие получается пористым, поскольку застывшие металлические капля ложатся друг на друга. Во-вторых, адгезия покрытия относительно основы довольно слабая, так как горячая капля малого объема, ударяясь о холодную поверхность, остывает быстро и прочная взаимная диффузия не успевает произойти. В связи с этим напыление с помощью сжатого воздуха в авиастроении находит ограниченное применение.

Рис. 4. Схема устройства металлизатора

Более распространено напыление с помощью плазмы. Она образуется в области электрической дуги, сквозь которую пропускается нейтральный газ, например аргон (рис. 5). Таким образом, в плазменную струю 2, выходящую из плазмотрона 1, подается по трубопроводу 3 аргон. В струю аргона через трубопровод 4 подают порошок металла, который мы хотим напылить. Вместе со струей 5 этот порошок подается к поверхности покрываемой детали 6. Практика показала, что плазменное напыление — весьма эффективный способ металлизации.

Рис. 5. Схема напыления с помощью плазмы

Все большее распространение находит способ детонационного напыления. Принцип нанесения металла на защищаемую поверхной (рис. 6) состоит в том, что находящийся в камере 1 металлический порошок при взрыве специального вещества взрывной волной 2 с огромной скоростью (до 2000 м/с) направляется к поверхности детали 3

. При этом частицы металла покрытия глубоко внедряются в металл основной детали.

Рис. 6. Схема детонационного напыления

Гальванический метод нанесения покрытий имеет ряд преиму­ществ по сравнению с другими. Гальванические покрытия характери­зуются хорошими физико-химическими и механическими свойствами: повышенными износостойкостью и твердостью, малой пористостью, высокой коррозионной стойкостью. При гальваническом методе имеется возможность точно регулировать толщину покрытия. Покры­тие некоторыми металлами можно осуществить только этим методом. Поэтому он получил довольно широкое распространение.

Принцип нанесения покрытия гальваническим методом основан на использовании электролиза. Он основан на электролитической диссо­циации, при которой в электролите при растворении какой-либо соли образуются ионы. Ионы в растворе, как и молекулы, движутся хаоти­чески. При подключении источника тока к электродам, опущенным в такой раствор, возникает направленное движение заряженных ионов. Положительные ионы движутся к отрицательному электроду — катоду, поэтому их называют катионами. Отрицательные ионы -анионы — движутся к положительному электроду — аноду. Следовательно, в отличие от электрического тока в металлических проводниках, представляющего собой движение электронов в одном направлении, электрический ток в электролитах представляет собой направленное движение ионов в растворе под действием электрического поля в их направлениях: положительных ионов к катоду и отрицательных аноду.

Рассмотрим конкретный пример. Пусть в электролите растворен медный купорос CuSO4 (рис. 7). В гальванической ванне 1 CuS04 распадается на два иона: положительный (Cu++) и отрицательный (SO4—). Покрываемая деталь 2

подвешена на штанге 3, соединенной с катодом. Анодная пластина 4 подвешена на штанге 5. Из рисунка видно, как ион 1 (катион) подходит к детали 2. Здесь он получает недостающие электроны, превращаясь в нейтральную молекулу Cu. Так происходит покрытие детали медью — меднение.

Рис. 7. Гальваническая ванна с электролитом на основе медного купороса

Анодное покрытие при возникновении коррозионной гальванической пары разрушается, сохраняя основу.

Катодное покрытие защищает основу — оно не дает доступа коррозионно-агрессивной среде к защищаемому металлу. При механическом нарушении целостности защитного никелевого покрытия (катода) 1

(рис. разрушается железная деталь 3 (анод), продукты коррозии 2 могут располагаться под покрытием. В этом случае в процессе эксплуатации очень важно не повреждать анодное покрытие.

Рис. 8. Разрушение железа — анода, покрытого никелем — катодом

Любое гальваническое покрытие будет прочно соединено с основой только в том случае, если покрываемая поверхность тщательно подготовлена — очищена от грязи, жировых пятен, окисных пленок. Поэтому производственным участкам для подготовки деталей под покрытие уделяется большое внимание. Чистота обработки поверхности, отсутствие пор, раковин и других повреждений способствует образованию более долговечного и надежного покрытия.

Хромирование позволяет получить высокую твердость покрытия, низкий коэффициент трения, высокую износостойкость и коррозионную стойкость. Несмотря на то, что хром относится к электроотрицательным металлам, он может сильно пассивироваться, благодаря чем приобретает свойства благородных металлов. Пассивная плен окислов предохраняет хромовое покрытие от потускнения.

Осаждение хрома на катоде производится из электролита, содержащего в качестве основного компонента не соль, как в больший гальванических процессов, а хромовый ангидрид. Часто хром покрытие получается пористым. При этом сам хром является катодом. Перед хромированием наносят подслой меди и никеля.

Цинкование дает возможность получить анодное цинковое покрытие, преимущества которого описаны выше. Широкое примение такого покрытия обусловлено дешевизной цинка. Существует большое число электролитов, применяющихся для цинкования. Однако всех случаях применяют те или иные соли цинка.

Кадмирование применяют для защиты от коррозии черных металлов. Кадмий химически более устойчив, чем цинк. Однако если цинковое покрытие почти всегда является анодным, то кадмии может менять свой характер. При одних условиях оно может анодным, при других — катодным. Кадмиевое покрытие довольно пластично, что обусловило его применение для защиты от коррозии деталей резьбовых соединений.

К существенным недостаткам кадмиевого покрытия относится что при контакте с различными смазочными и топливными материалами, содержащими сернистые соединения, а также с некоторыми пластмассами, выделяющими газообразные продукты, кадмий довольно быстро разрушается. Вот почему кадмированные детали в авиастроении не применяют в топливных системах.

Химические способы нанесения металлов основаны на возможности химического восстановления ионов, содержащих металл, до чистого металла. Наиболее распространен способ химического никелирования. Такое покрытие хорошо защищает металл от коррозии.

Основным преимуществом химического никелирования является возможность осаждения никеля равномерным слоем на деталях практически любой конфигурации и даже на внутренних стенках труб.

Существует несколько методов нанесения металли­ческих покрытий на металлическую поверхность деталей; горячим методом (погружения в расплав), термомеханическим методом (плакированием), напылением, гальваническим и химическим методами.

Горячим методом наносят пленку, погружая деталь в ванну с расплавленным металлом. В этом случае используют металлы с низкой температурой плавления, например олово и свинец. Горячим способом наносят покрытия на готовые изделия. В авиаконструкциях чаще всего этот метод применяют для лужения электропроводов. Существенный недостаток этого метода — невозможность получения гарантированной толщины покрытия, а также большой расход наносимого металла.

Термомеханический метод (плакирование) используют для защиты коррозии основного металла или сплава другим металлом или сплавом, достаточно устойчивым к воздействию окружающей среды. Соединение металлов покрытия и основы получают прокаткой. На основной лист (или другой вид проката) металла накладывают тонкий лист защитного металла и в горячем состоянии осуществляют прокатку с помощью валков. В этом случае образуется очень прочное соединение ‘ двух металлов за счет взаимной диффузии. В авиаконструкциях часто применяют плакирование технически чистым алюминием. На нем образуется защитная окисная пленка, предохраняющая основной металл от коррозии. Толщина плакирующего слоя колеблется от 3% и выше толщины защищаемого металла. В авиастроении применяют плакированные листы и ленты.

Напыление (металлизация) — процесс нанесения расплавленного металла на поверхность изделия. Он может осуществляться сжатым воздухом или инертным газом. Сущность метода с использованием сжатого воздуха состоит в том, что частицы расплавленного металла, двигаясь большой скоростью, вместе с воздушным потоком ударяются о поверхность защищаемого металла, сцепляются с ней, образуя металлическое покрытие. В электрометаллизаторе (рис. 4) с помощью специального устройства подается проволока 2 к соплу корпуса 1,где электрической дугой 3 проволока расплавляется и капли распылен­ного металла подхватываются струей сжатого воздуха, проходящего по направляющей трубке 4. Не успевшие застыть капли жидкого металла прилипают к поверхности металлизируемой детали. У этого метода имеются два существенных недостатка. Во-первых, покрытие получается пористым, поскольку застывшие металлические капля ложатся друг на друга. Во-вторых, адгезия покрытия относительно основы довольно слабая, так как горячая капля малого объема, ударяясь о холодную поверхность, остывает быстро и прочная взаимная диффузия не успевает произойти. В связи с этим напыление с помощью сжатого воздуха в авиастроении находит ограниченное применение.

Рис. 4. Схема устройства металлизатора

Более распространено напыление с помощью плазмы. Она образуется в области электрической дуги, сквозь которую пропускается нейтральный газ, например аргон (рис. 5). Таким образом, в плазменную струю 2, выходящую из плазмотрона 1, подается по трубопроводу 3 аргон. В струю аргона через трубопровод 4 подают порошок металла, который мы хотим напылить. Вместе со струей 5 этот порошок подается к поверхности покрываемой детали 6. Практика показала, что плазменное напыление — весьма эффективный способ металлизации.

Рис. 5. Схема напыления с помощью плазмы

Все большее распространение находит способ детонационного напыления. Принцип нанесения металла на защищаемую поверхной (рис. 6) состоит в том, что находящийся в камере 1 металлический порошок при взрыве специального вещества взрывной волной 2 с огромной скоростью (до 2000 м/с) направляется к поверхности детали 3

. При этом частицы металла покрытия глубоко внедряются в металл основной детали.

Рис. 6. Схема детонационного напыления

Гальванический метод нанесения покрытий имеет ряд преиму­ществ по сравнению с другими. Гальванические покрытия характери­зуются хорошими физико-химическими и механическими свойствами: повышенными износостойкостью и твердостью, малой пористостью, высокой коррозионной стойкостью. При гальваническом методе имеется возможность точно регулировать толщину покрытия. Покры­тие некоторыми металлами можно осуществить только этим методом. Поэтому он получил довольно широкое распространение.

Принцип нанесения покрытия гальваническим методом основан на использовании электролиза. Он основан на электролитической диссо­циации, при которой в электролите при растворении какой-либо соли образуются ионы. Ионы в растворе, как и молекулы, движутся хаоти­чески. При подключении источника тока к электродам, опущенным в такой раствор, возникает направленное движение заряженных ионов. Положительные ионы движутся к отрицательному электроду — катоду, поэтому их называют катионами. Отрицательные ионы -анионы — движутся к положительному электроду — аноду. Следовательно, в отличие от электрического тока в металлических проводниках, представляющего собой движение электронов в одном направлении, электрический ток в электролитах представляет собой направленное движение ионов в растворе под действием электрического поля в их направлениях: положительных ионов к катоду и отрицательных аноду.

Рассмотрим конкретный пример. Пусть в электролите растворен медный купорос CuSO4 (рис. 7). В гальванической ванне 1 CuS04 распадается на два иона: положительный (Cu++) и отрицательный (SO4—). Покрываемая деталь 2

подвешена на штанге 3, соединенной с катодом. Анодная пластина 4 подвешена на штанге 5. Из рисунка видно, как ион 1 (катион) подходит к детали 2. Здесь он получает недостающие электроны, превращаясь в нейтральную молекулу Cu. Так происходит покрытие детали медью — меднение.

Рис. 7. Гальваническая ванна с электролитом на основе медного купороса

Анодное покрытие при возникновении коррозионной гальванической пары разрушается, сохраняя основу.

Катодное покрытие защищает основу — оно не дает доступа коррозионно-агрессивной среде к защищаемому металлу. При механическом нарушении целостности защитного никелевого покрытия (катода) 1

(рис. разрушается железная деталь 3 (анод), продукты коррозии 2 могут располагаться под покрытием. В этом случае в процессе эксплуатации очень важно не повреждать анодное покрытие.

Рис. 8. Разрушение железа — анода, покрытого никелем — катодом

Любое гальваническое покрытие будет прочно соединено с основой только в том случае, если покрываемая поверхность тщательно подготовлена — очищена от грязи, жировых пятен, окисных пленок. Поэтому производственным участкам для подготовки деталей под покрытие уделяется большое внимание. Чистота обработки поверхности, отсутствие пор, раковин и других повреждений способствует образованию более долговечного и надежного покрытия.

Хромирование позволяет получить высокую твердость покрытия, низкий коэффициент трения, высокую износостойкость и коррозионную стойкость. Несмотря на то, что хром относится к электроотрицательным металлам, он может сильно пассивироваться, благодаря чем приобретает свойства благородных металлов. Пассивная плен окислов предохраняет хромовое покрытие от потускнения.

Осаждение хрома на катоде производится из электролита, содержащего в качестве основного компонента не соль, как в больший гальванических процессов, а хромовый ангидрид. Часто хром покрытие получается пористым. При этом сам хром является катодом. Перед хромированием наносят подслой меди и никеля.

Цинкование дает возможность получить анодное цинковое покрытие, преимущества которого описаны выше. Широкое примение такого покрытия обусловлено дешевизной цинка. Существует большое число электролитов, применяющихся для цинкования. Однако всех случаях применяют те или иные соли цинка.

Кадмирование применяют для защиты от коррозии черных металлов. Кадмий химически более устойчив, чем цинк. Однако если цинковое покрытие почти всегда является анодным, то кадмии может менять свой характер. При одних условиях оно может анодным, при других — катодным. Кадмиевое покрытие довольно пластично, что обусловило его применение для защиты от коррозии деталей резьбовых соединений.

К существенным недостаткам кадмиевого покрытия относится что при контакте с различными смазочными и топливными материалами, содержащими сернистые соединения, а также с некоторыми пластмассами, выделяющими газообразные продукты, кадмий довольно быстро разрушается. Вот почему кадмированные детали в авиастроении не применяют в топливных системах.

Химические способы нанесения металлов основаны на возможности химического восстановления ионов, содержащих металл, до чистого металла. Наиболее распространен способ химического никелирования. Такое покрытие хорошо защищает металл от коррозии.

Основным преимуществом химического никелирования является возможность осаждения никеля равномерным слоем на деталях практически любой конфигурации и даже на внутренних стенках труб.

Использование антикоррозийных составов из линейки Rocket Chemical

Эта американская компания специализируется на выпуске химических препаратов, используемых в быту. Одним из направлений ее деятельности является производство средств для предотвращения появления ржавчины на железе. Доверие потребителей заслужили следующие антикоррозионные составы:

  • Литиевая смазка с защитным действием. Нанесите препарат на участок из металла для профилактики и защиты от ржавления. Производитель рекомендует покрывать им реечные механизмы, тросы, цепи и дверные петли. Образовавшейся на этих деталях тонкой пленке не будут страшны ни снег, ни дождь.
  • Ингибитор продолжительного действия. Части металлических конструкций, обработанные этим средством не подвергнутся воздействию ржавчины в течение 5-7 лет. Этот препарат становится спасением для тех, кто думает, чем покрыть металл чтобы не ржавел в воде.


Ингибитор ржавчины «Likkor» Источник prom.st

Оксидное покрытие

Оксидное покрытие – результат оксидирования. Так называется процесс получения на поверхности изделия искусственно образованной пленки, состоящей преимущественно из оксидов покрываемого материала. В случае оксидировании сталей и чугунов на их поверхности образуется темная пленка, состоящая условно из оксида железа Fe3O4 толщиной всего несколько мкм. Среди прочих других, наиболее распространен способ химического оксидирования. При его реализации покрываемое изделие погружают в кипящий раствор, чаще всего состоящий из щелочи и окислителей — нитратов и нитритов. Получающаяся пленка плотно сцеплена с металлом основы, имеет черный цвет. Для повышения коррозионной стойкости пленку промасливают, благодаря чему ее поры заполняются и становятся непроницаемыми для внешней агрессивной среды. Одним из широко распространенных вариантов оксидирования является воронение. Название происходит от цвета покрытия. Оно черное с синим отливом, как крыло у ворона.

В нашем ассортименте оксидные покрытия можно встретить:

  • на изделиях из стали класса прочности большего, чем 8.8, для предотвращения наводороживания при цинковании;

  • на винтах установочных, где недопустимо использование мягкого покрытия;
  • на стопорных кольцах DIN 471 и 472

  • на шайбе упорной быстросъемной DIN 6799.

Видео описание

Как удалить ржавчину с помощью Silit, смотрите в этом видео

Некоторые домашние мастера используют для избавления от коррозии Coca-Cola или Pepsi. В составе этих напитков находится ортофосфорная кислота, которая с легкостью удаляет небольшие пятна ржавчины. Протрите жидкостями металлические поверхности или погрузите в них детали. Затем ополосните под проточной водой.


Pepsi легко справится со ржавчиной на небольших участках Источник yandex.net

Популярностью пользуется и смесь на основе парафина и керосина. Возьмите эти средства в одинаковых пропорциях и смешайте. Нанесите на обрабатываемую поверхность в несколько тонких слоев губкой или кистью. Оставьте хотя бы на сутки. После указанного времени удалите смесь вместе с ржавчиной тряпкой, промойте водой и уберите влагу тряпкой или губкой. Лучше всего использовать такой способ для инструментов. Не забудьте про маску, перчатки и защитные очки при обработке керосиново-парафиновой смесью.

Фосфатное покрытие

Фосфатное покрытие – результат фосфатирования. Так называют процесс химической обработки стали (как, впрочем, и других металлов и сплавов), в растворах фосфорнокислых солей щелочных металлов или аммония. В результате фосфатирования на поверхности изделия возникает слой из труднорастворимых солей – фосфатов железа. Покрытие имеет цвет от темно-серого до черного и шероховатую поверхность. Обычная толщина защитного слоя составляет 2-5 мкм. Он устойчив против воздействия керосина, смазочных масел, кислорода воздуха, выдерживает кратковременный нагрев до 5000С и охлаждение до — 750С, но разрушается под действием кислот и щелочей. Часто используется как грунт – покрытие под окраску.

В нашем ассортименте фосфатные покрытия можно встретить:

  • на стопорных кольцах
  • на саморезах для крепления гипсокартонных и гипсоволоконных плит

Разновидности, состав и емкость

По составу неметаллические смеси делятся на несколько групп:

  1. Силикатные эмали – востребованы для обработки элементов, работающих при высоких температурах или в химически агрессивных средах. Выпускаются в виде пасты или порошка. Процесс обработки проводится в несколько этапов. Изначально наносится грунтовка, улучшающая адгезию и снижающая термическое или механическое напряжение. После высыхания слоя, изделие вскрывается покровной эмалью и вновь нагревается до высокой температуры. Застывшее вещество образует тонкий слой, который хорошо защищает изделие. Покрытие не обладает высокой прочностью, поскольку эмаль трескается и осыпается при сильных ударах.
  2. Полимерные покрытия – чаще всего в таких составах присутствует полиэтилен, полиизобутилен, фторопласты, полистирол, полипропилен, эпоксидные смолы. Смеси могут наноситься на поверхность обычной кистью, методом окунания или напыления. После засыхания они образуют пленку, толщиной в несколько элементов. К полимерным веществам относятся и антифрикционные твердосмазочные смеси. Они похожи на краску, но вместо пигментов в их состав входят твердые смазочные материалы. Основа большинства материалов – графит, дисульфит молибдена, политетрафторэтилен (ПТФЭ) и другие твердые смазки. В качестве связывающих веществ задействуются эпоксидные, фенольные, акриловые и полиамид-имидные смолы, полиуретан, титанат и другие компоненты.
  3. Лакокрасочные покрытия – состав формируется из пленкообразующих веществ, пигментов, наполнителей, пластификаторов, катализаторов и растворителей. Средства не только защищают изделия, но и обеспечивают им привлекательный внешний вид. При добавлении в состав некоторых частиц, материалы получают особые свойства. Например, токопроводность, жаростойкость, повышенную прочность и кислотность.
  4. Гуммирование – обработка резиной или эбонитами трубопроводов, цистерн и резервуаров для транспортировки агрессивных веществ. Существуют твердые и мягкие покрытия. Мягкость состава контролируется путем подмешивания в смесь серы. Вещество наносится на чистую поверхность, предварительно обработанную резиновым клеем, затем проводится вулканизация.
  5. Покрытия из паст и смазок – применяются для продолжительного хранения и перевозки изделий из металла и их защиты от агрессивных сред. Вещества наносятся кистью или методом распыления. После высыхания создается пленка, пресекающая контакт деталей с влагой, пылью и различными газообразными веществами. Смазки производят на основе минеральных масел с частицами восокообразивных компонентов – парафина, мыла, воска. Пасты делают из суспензий минерального воска, парафина или каучука, а также полиизобутилена. Такие средства эффективные при условии, что пленка не будет разрушена при механических нагрузках.

Защитные покрытия, не требующие обязательного применения в производственных условиях, фасуются в резервуары небольшого, среднего и крупного объема. В частности, в канистры, банки, ведра и бочки, емкостью до нескольких сот литров. Отдельные составы выпускают в аэрозольных упаковках для удобства обработки труднодоступных мест.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]