Биполярные транзисторы с изолированным затвором — IGBT — Insulated Gate Bipolar Transistor

Когда дело доходит до импульсных преобразователей, оба типа транзисторов имеют свои преимущества и недостатки. Но какой из них лучше для данного устройства? В этой статье сравним MOSFET с модулями IGBT чтобы понять, что и где лучше ставить.

Предполагается что в схемах с низким напряжением, низким током, но высокой частотой переключения, предпочтительно использовать полевые транзисторы (MOSFET), а в схемах с высоким напряжением, высоким током, но с низкой частотой — лучше IGBT. Но достаточно ли такой общей классификации? У каждого есть свои дополнительные предпочтения в этом отношении и правда в том, что не существует общего, жесткого стандарта, который позволял бы оценивать параметры данного элемента с точки зрения его использования в импульсных преобразователях. Все зависит от конкретного применения и широкого спектра факторов, таких как частота переключения, размер, стоимость и т. д. Поэтому, вместо того чтобы пытаться решить какой элемент лучше, нужно внимательно изучить различия между этими деталями.

MOSFET или IGBT?

Сначала рассмотрим различия в целом. В настоящий момент все производители инверторов (ММА) выпускаются по двум полупроводниковым технологиям IGBT и MOSFET. Не буду вдаваться в подробности, скажу только то, что в схемотехнике этих аппаратов используются разные полупроводниковые транзисторы IGBT и MOSFET. Основое различие между этими транзисторами — различный ток коммутации. Большим током обладают транзисторы IGBT.

Для изготовления стандартного инвертора понадобится 2–4 IGBT транзистора (в зависимости от рабочего цикла), a MOSFET — 10–12, т. к. они не могут пропускать через себя большие токи, поэтому их приходится делить на такое большое количество транзисторов. Вот собственно в чем и отличие.

Тонкость в том, что транзисторы очень сильно греются и их необходимо установить на мощные алюминиевые радиаторы. Чем больше радиатор, тем больше съем тепла с него, а, следовательно, его охлаждающая способность. Чем больше транзисторов, тем больше радиаторов охлаждения необходимо установить, следовательно, увеличиваются габариты, вес и т. д. MOSFET здесь однозначно проигрывает.

На практике схемотехника MOSFET не позволяет создать аппарат на одной плате: т.е аппараты, которые сейчас есть в продаже, собраны в основном на трех платах. IGBT аппараты всегда идут на одной плате.

Силовой инверторный блок


Переменное напряжение 220 В – это некоторое усредненное значение, которое показывает, что оно имеет такую же энергию, как и постоянный ток в 220 В. Фактически амплитуда равна 310 В. Из-за этого в фильтрах используются емкости на 400 В.

Мостовая выпрямительная сборка монтируется на радиатор. Требуется охлаждение диодов, поскольку через них протекают большие токи. Для защиты диодов от перегрева на радиаторе имеется предохранитель, при достижении критической температуры он отключает мост от сети.

В качестве фильтра используются электролитические конденсаторы, емкостью от 470 мкФ и рабочим напряжением 400 В. После фильтра напряжение поступает на инвертор.

Во время переключения ключей происходят броски импульсного тока вызывающие высокочастотные помехи. Чтобы они не проникали в сеть и не портили ее качество, сеть защищают фильтром электромагнитной совместимости. Он представляет собой набор конденсаторов и дросселя.

Сам инвертор собирается по мостовой схеме. В качестве ключевых элементов применяются IGBT транзисторы на напряжения от 600 В и токи соответствующие данному инвертору.

Они тоже с помощью специальной термопасты монтируются на радиаторы. При переключениях этих транзисторов возникают броски напряжения. Чтобы их погасить применяются RC фильтры.

Полученный на выходе электронных ключей переменный ток поступает на первичную обмотку высокочастотного понижающего трансформатора. На выходе вторичной обмотки получается переменный ток напряжением 50-60 В.

Под нагрузкой, когда идет сварка, он может выдавать ток до нескольких сотен ампер. Вторичная обмотка обычно выполняется ленточным проводом для уменьшения габаритов.

На выходе трансформатора стоит еще один мощный диодный мост. С него уже снимается необходимый сварочный ток. Здесь используются быстродействующие силовые диоды, другие использовать нельзя, потому что они сильно греются и выходят из строя. Для защиты от импульсных бросков напряжения используются дополнительные RC цепи.

Что лучше MOSFET или IGBT?

Некоторые компании идут в ногу со временем и при производстве сварочных инверторов используют IGBT транзисторы американской , частота переключения которых составляет 50 кГц, т. е. 50000 раз в секунду. IGBT технологию выбрали неспроста, ведь рабочий диапазон температур у них с сохранением параметров гораздо больше, чем у MOSFET, т. е. при нагреве у MOSFETa падают качественные характеристики.

В конструкции САИ (Ресанта) используется одна маленькая плата, которая устанавливается вертикально, а также 4 IGBT транзистора (работают обособленно друг от друга, т. е. не выгорают все, если выгорел один как у MOSFET) и 6 диодов-выпрямителей (а не 12 как у MOSFET), соответственно отказоустойчивость ниже. Это ещё один «плюс» IGBT.

Можно напомнить покупателю о том, что в современных сварочных инверторов используется только 4 обособленных транзистора, а не 12 каскаднозависимых как у MOSFET. Всякое в жизни бывает, но, чтобы не произошло в случае выхода из строя одного транзистора (если не гарантийный случай), замена покупателю обойдется где-то в районе 400 р., а не 12×110 р. = 1320 р. Думаю, что разница приличная.

Как отличить: Визуально аппараты IGBT в большинстве своём отличаются от MOSFET вертикальным расположением силовых разъёмов, т. к. плата одна и обычно устанавливается вертикально. У MOSFET аппаратов выходы обычно расположены горизонтально, т. к. платы в конструкции горизонтально закреплены. Нельзя точно утверждать, что это верно на 100%. Точнее можно сказать, сняв кожух с аппарата.

Многие на транзисторах. Так, например, в настоящий момент выпустила на рынок аппараты (по технологии MOSFET) с наклейками на боковых панелях «Используются транзисторы TOSHIBA» а также «Используются транзисторы Mitsubishi». Пытаются выползти на громких и знакомых брендах. На практике это не подтвердилось. Так на крупнейшей Международной инструментальной выставке России Moscow International Tool Expo (MITEX-2011), которая проходила в ноябре 2011г. в «Экспоцентре» (г. Москва), я попросил представителей стенда данной компании разобрать их САИ с наклейкой «Используются транзисторы Mitsubishi» и продемонстрировать данные транзисторы. В итоге сварочные инверторы разобрали, но данных транзисторов не обнаружили. Сами сотрудники были в шоке, обнаружив безымянные транзисторы.

Источник

Не нужно на 100% разбираться в премудростях электротехники, чтобы высказать мнение по теме. Заголовок «MOSFET или IGBT?» напоминает старое соревнование форматов: VHS или DVD? Кто же победит? И пусть скажут, сравнение не корректное. Но, DVD формат великолепный, качество звука и изображения замечательные, а мы все так привыкли к старому доброму VHS…

Для тех, кто не понимает о чем идет речь, поясним. На сегодняшний день существует две технологии изготовления сварочных инверторов,

Возникает закономерный вопрос: что же выбрать старое, проверенное временем, или относительно новое, но более технологичное?

Попробуем привести пару доводов и, как говорится, ближе к «телу»…

Что не говори, а IGBT занимают меньший объем и при этом позволяют получить более высокую силу тока на выходе, они меньше нагреваются. Разве это не аргумент в пользу IGBT? Возражения же заключаются в том, что схемы IGBT покамест не идеально продуманы и т.д., разработчикам не было времени на это и они звучат «натянуто».

Конечно, если покупать инвертор для бытовой сварки, то не так уж важно, какие у него транзисторы внутри. Вообще не важно, что внутри. Главное, чтобы электрод поджигался нормально, дуга не прыгала туда-сюда, чтобы электрод не залипал. Так же, желательно, чтобы инвертор работал при пониженном напряжении в сети, не боялся забросов напряжения, чтобы желтая лампа перегрева редко зажигалась.

Если речь идет о небольших объемах бытовых работ, то практически любой инвертор в этом станет вашим надежным другом и товарищем, та же Ресанта или Сварог, или Фубаг, или отечественный Форсаж и т.д. и т.п.

Но что, если нужен профессиональный аппарат, когда варить придется целый день. Наше мнение, здесь лучше IGBT. Почему? Возьмем для примера сварочный аппарат РICO 180— это же прелесть, а не сварочник! Приведем в качестве примера его систему охлаждения. Она интеллектуальная и включается только тогда, когда транзисторы нагреваются. А в РICO даже после 15 и более минут сварки на небольших токах вентилятор не шелохнется. Это значит, что схемы холодные, корпус аппарата холодный. И все это IGBT, они греются менее интенсивно, чем MOSFET и на более высоких токах. Ну и что мне с этого, скажете Вы? Очень просто. Чем меньше работает вентилятор, тем лучше! Особенно если Вы работаете в запыленных помещениях. Основной враг инвертора — это пыль. Она является основной причиной досрочного выхода инверторов из строя. Соответственно, чем меньше пыли затягивается в сварочный аппарат, тем лучше! А это значит, чем дольше не включаются кулеры, тем лучше! Получить это можно только с IGBT.

Несомненный плюс так же состоит в том, что достигается высокая мощность при еще более малом весе. Каждый грамм играет роль, если приходится целый день носить инвертор на плече.

Минус в свое время был в дороговизне ремонта IGBT и невозможности подчас найти запчасти. Но время идет, техника совершенствуется, а то, что было раньше дорогим и недоступным, становится обыденным и легкозаменяемым! Так что наше мнение, будущее за новыми технологиями. А Вы как думаете? Стоит с этим согласиться?

Сегодня уже ни для кого не секрет кто выиграл в битве «VHS или DVD».

Источник

Транзисторы для сварочных инверторов

Время чтения: 6 минут

За последние 100 лет технология сварки претерпела значительные изменения. Классические сварочные аппараты были усовершенствованы, а в продаже появились совершенно новые устройства. Наибольший вклад в развитие домашней и любительской сварки внесло изобретение инверторного сварочного аппарата. Его электронная «начинка» позволяет внедрить функции, которые недоступны классическому трансформатору или выпрямителю.

А если в сварочном аппарате применяется электроника, значит, используются и транзисторы. В этой статье мы подробно расскажем, что такое транзистор, какие транзисторы используются в сварочных инверторах и чем отличаются транзисторы IGBT в сварочном аппарате от транзисторов MOSFET.

Общая информация

Транзисторы — что это такое? Наверняка каждый, кто хоть раз сталкивался с ремонтом или банальной разборкой радиоэлектроники, слышал этот термин. Говоря простыми словами, транзистор — это электронная деталь с выводами, изготовленная из полупроводникового материала. Основная функция транзистора — это усиление или генерирование электрических сигналов, поступающих извне. Также с помощью транзисторов выполняется коммутация.

На данный момент транзисторы есть в любом электронном приборе и являются один из важнейших компонентов. В середине прошлого века сразу несколько ученых получили Нобелевскую премию за изобретение транзистора. И с тех пор это небольшое приспособление кардинально изменило мир электроники.

Транзисторы очень маленькие и компактные. Они экономичны, их производство стоит недорого. Несмотря на свой скромный размер, транзистор устойчив к механическому воздействию и долговечен. Также транзисторы способны исправно работать при низком напряжении и при высоких значениях тока. Именно благодаря этим достоинствам к концу 20-го века транзисторы стали неотъемлемой частью каждого электронного прибора. В том числе, у инверторных сварочных аппаратов.

С помощью транзисторов удалось собрать компактную схему и внедрить ее в инвертор. Таким образом, существенно снизились размеры и вес сварочного аппарата. На данный момент производители предлагают инверторы весом до 5 кг, которые можно положить в рюкзак и взять с собой на выездные работы. Также такие аппараты незаменимы при сварке на высоте или в труднодоступных местах.

В сравнении с обычным трансформатором, который использовался раньше для сварки, инверторы намного проще в освоении. А наличие дополнительных функций (например, функции горячего старта или антизалипания) помогает новичкам как можно скорее приступить к работе. И все это заслуга транзисторов.

Модуль IGBT для преобразователя частоты

Со схемой управления IGBT-модули связываются при помощи драйверов, так как встроенных драйверов модули не имеют. Это специальные интегральные схемы, которые позволяют эффективно управлять затворами IGBT и выжать из них максимальную эффективность. Главное, для чего нужны драйверы – до предела снизить времена переключения IGBT, и, тем самым, приблизить их к идеальному ключу из учебников по электротехнике. Затем, согласовать их со схемой управления электрически, в том числе, обеспечить гальваническую развязку при необходимости.

Если для усиления частотного преобразователя используются внешние модули IGBT, то остается только подключить к ним выходы драйверов. Ниже показана схема модуля для преобразователя частоты:

Модуль крепится винтами на охлаждающий алюминиевый радиатор через теплопроводящую свинцовую пасту или специальные керамические прокладки. Эти поверхности должны лежать строго в одной плоскости и быть совершенно чистыми при сборке! Иначе не будет обеспечен достаточный теплоотвод. Кстати, о температуре. В модуль встроен термисторный датчик температуры (клеммы 22 и 23). Рабочая температура в модуле не должна превышать 100°C. Для снятия достаточного тока сделаны дополнительные петли на силовых контактах (модуль выполнен под пайку).

Контакты 1,2,3; 4,5,6; 7,8,9 подключаются к питающей трехфазной сети.

Контакты 38,39,40 являются плюсовой шиной сетевого выпрямителя, а контакты 41,42,43 – отрицательной.

Контакты 33,34,35 являются плюсовой шиной выходного инверторного моста, а контакты 30,31,32 – отрицательной. Последние четыре перечисленные группы, а также контакт 29, группа 36,37 образуют выходы для звена постоянного тока.

Контакты 10, 28 служат для подключения к драйверу, управляющему работой выходной фазы частотника. Аналогичную роль играют группы 14, 26 и 18, 24 для двух оставшихся фаз. Контакты 11, 12, 13 – это выход одной фазы инвертора, а группы 15,16,17 и 19,20,21 выходы двух остальных фаз.

Правильные временные диаграммы ШИМ и достаточная эффективность драйверов, которые должны справиться с зарядкой и разрядкой емкости затвора транзистора, – это залог того, что двигатель вообще будет вращаться и ничего не сгорит. Поэтому инверторный мост предварительно надо запитать от маломощного источника постоянного тока с ограничением тока и убедиться, при помощи осциллографа, в отсутствии сквозных токов, правильности “синусов”, формируемых мостом, правильном сдвиге фаз, на всех частотах, которые выдает преобразователь. Питание управления в частотном преобразователе также подается лабораторным способом.

Сигнал обратной связи по температуре модуля также должен быть корректным. Подогревая модуль каким-либо способом в пределах 20…80°C, необходимо контролировать его фактическую температуру точным термометром. Затем найти в меню преобразователя пункт с соответствующим параметром, проконтролировать его.

Если мы убедимся, что драйверы надежно управляют модулем, а сигнал обратной связи по температуре не содержит ошибок, то тогда можно делать монтаж, собирать звено постоянного тока и затем снова сделать проверку на двигателе небольшой мощности, через предохранители, рассчитанные на соответствующий ток, включаемые в каждую фазу.

Транзисторы в инверторах

Транзистор — это один из главных компонентов современного сварочного инвертора. Без него инвертор в принципе не будет так называться. И, поскольку сварочные инверторы уже прочно вошли в нашу жизнь, то нелишним будет узнать немного больше об их электронной «начинке». Эта информация будет полезна не столько мастерам по ремонту сварочных аппаратов, сколько самим сварщикам. Для лучшего понимая сути используемого вами оборудования.

Итак, на данный момент чаще всего в сварочных инверторах применяются транзисторы двух типов: IGBT и MOSFET. Именно благодаря им удается добиться достойного качества работ, внедрения новых функций и уменьшению габаритов аппарата.

Подробнее про IGBT

Мы решили заострить ваше внимание на IGBT транзисторах, поскольку они считаются самыми технологичными. IGBT представляет собой стандартный биполярный транзистор с изолированным затвором. Усиливает и генерирует электрические колебания. Часто применяется в инверторе. От полевого транзистора отличается тем, что генерирует силовой канал, а не управляет им. Представляет собой 2 транзистора на подложке.

Именно благодаря IGBT транзисторам удалось развить производство современных сварочных инверторов. Поскольку именно данный тип транзисторов способен работать при высоком напряжении. Очень скоро производителям стало ясно, что применение IGBT транзисторов способно вывести производство инверторов на новый уровень. Удалось значительно уменьшить размеры аппаратов и увеличить их производительность. Порой стандартный IGBT транзистор способен заменить даже тиристор.

Иногда в IGBT инверторы внедряют специальные микросхемы, которые усиливают управляющий электрический сигнал и ускоряют зарядку затворов. Это необходимо для исправного функционирования мощных переключателей.

IGBT или MOSFET?

Выше мы уже упомянули, что помимо транзисторов типа IGBT существуют еще и транзисторы MOSFET. И многие сварщики любят спорить на форумах, какие транзисторы лучше, а какие хуже. Что мы думаем по этому поводу? Сейчас узнаете.

IGBT — это биполярные транзисторы. А MOSFET — полевые. И отличий у них больше, чем многим кажется на первый взгляд. Основное отличие — максимальная мощность, которую способен выдержать транзистор. У IGBT этот показатель выше, поэтому стоят они дороже, чем MOSFET. А это значит, что управляющая схема тоже стоит дороже.

На практике, сварщик практически не заметит разницы при работе с инверторам на IGBT или MOSFET. В характеристиках разница есть, но на практике она ощущается слабо. К тому же, на IGBt инверторы сложнее найти запчасти и вообще грамотного мастера по ремонту. И расходники стоят дороже.

Если вы используете недорогой инвертор для домашней сварки, то разницу между IGBT и MOSFET вы точно не заметите. Все преимущества IGBT раскрываются только в профессиональном оборудовании, предназначенном для высоковольтного подключения. В таком случае больший диапазон мощностей действительно играет важную роль и стоит предпочесть IGBT инвертор. В остальных же случаях не важно, какие транзисторы установлены. Вы, как любитель, разницу не почувствуете.

Словом, если вы новичок, то приобретайте инвертор на любых транзисторах. Инвертор на MOSFET будет стоить дешевле, вы сможете проще и быстрее его отремонтировать. А если вы выбираете инвертор для профессиональной сварки, то лучше выбрать аппарат на IGBT транзисторах. Они позволят использовать больше мощности. Но и их обслуживание обойдется дороже.

Рабочее напряжение

Блокирующая способность

Поскольку большинство силовых преобразователей получает питание от однофазных или трехфазных выпрямителей, стандартные нормы блокирующей способности MOSFET и IGBT (600, 1200, 1700 В) выбираются с учетом параметров промышленных сетей. В таблице 1 даны рекомендации по определению рабочего напряжения силовых модулей при работе от неуправляемого выпрямителя (или при нулевом угле отсечки для управляемого выпрямителя) VN или непосредственно от DC-шины (VCC , VDC).Таблица 1.Рекомендуемое рабочее напряжение MOSFET/IGBT для разных вариантов питающего напряжения

VN, В Схема выпрямления VCC, VDC, В VDSS, VCES, В
24 B2 22 50
48 B2 44 100
125 B2 110 200
200–246 B2 180–220 500, 600
400–480 B6 540–648 1200
575–690 B6 777–932 1800

Кроме того, необходимо оценить предельно возможный уровень перегрузки с учетом следующих факторов:

  • максимальное значение выпрямленного напряжения с учетом допусков на сеть или максимально возможное значение выходного сигнала активного выпрямителя или ККМ (корректора коэффициента мощности);
  • пиковые всплески питающего сигнала, не подавленные входными фильтрами, конденсаторами звена постоянного тока (ЗПТ), супрессорами (варисторами), снабберами;
  • динамические пики напряжения в DC-шине, вызванные осцилляциями между индуктивностями и емкостями источника питания;
  • предельное напряжение тормозного каскада (если он имеется);
  • коммутационные перенапряжения при выключении IGBT (VCC+DV), DV ≈ Lstray × 0,8ICmax/tf (при ICmax), где Lstray — суммарная паразитная индуктивность цепи коммутации, IСmax — максимальное значение тока выключения (как правило, ток КЗ), tf (при ICmax) — время выключения тока ICmax.

Отметим, что биполярные структуры, в отличие от MOSFET, не обладают стойкостью к лавинному пробою, поэтому перегрузка IGBT по напряжению недопустима даже в кратковременном режиме. Приводимые в документации предельные значения VCES или VDES, как правило, относятся к кристаллам, а не модулю, следовательно, при расчетах следует учитывать динамический перепад сигнала между чипами и силовыми терминалами. Собственная индуктивность выводов LCE или LDC (она находится в пределах 15–30 нГн) является частью Lstray. Таким образом, максимальная величина напряжения на терминалах модуля VCEmax,T или VDSmax,T должна быть ограничена в соответствии с формулой:

VCEmax,T ≤ VCES × LCE × 0,8ICmax/tf (при ICmax).

Для ЗПТ с учетом всех возможных видов стационарных или коммутационных перенапряжений справедливо выражение:

VCСmax ≤ VCES–Lstray × 0,8ICmax/tf (при ICmax).

Данная методика позволяет определить динамический перепад между терминалами и кристаллом и, соответственно, общий уровень перенапряжения на чипе. В некоторых модулях (SEMiX) имеется непосредственный доступ к выводам кристаллов Cx, Ex, что позволяет провести соответствующие измерения. Результаты таких замеров, выполненных при отключении тока КЗ (рис. 1), показывают, что кристаллы 4-го поколения IGBT особенно чувствительны к токовой перегрузке, если напряжение на DC-шине приближается к предельным значениям (что может быть, например, в режиме торможения). Для безопасного блокирования IGBT 4 в аварийном режиме (при IC > 2ICnom) рекомендуется применение режима плавного отключения (STO, SSD) при увеличенном значении RGoff(например, 20 Ом для 300-А модуля). Существуют также различные виды «интеллектуального» запирания, один из которых, названный IntelliOff, реализован в цифровом драйвере модулей SKiiP 4-го поколения [3].

Рис. 1. Напряжение на кристаллах 450

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]