Применение и особенности расчетов двутавровой балки

Двутавр – вид фасонного проката с поперечным сечением Н-образной формы, обладающий высокими прочностными характеристиками. Благодаря этому, он широко применяется при строительстве многоэтажных большепролетных сооружений. Точный выбор подходящего номера проката осуществляют специалисты с помощью расчетов, учитывающих нагрузки, которые будет испытывать двутавр во время эксплуатации. Для приблизительного определения номера профиля можно воспользоваться онлайн-калькулятором.

Какие параметры могут понадобиться для расчета?


Изначально требуется знать следующие параметры, без которых произвести расчет невозможно:

  • Длина двутавровой балки (расстояние между стенами с учетом их толщины, балка должна лежать свободно и быть прикрепленной неподвижно);
  • Примерная нагрузка на перекрытие (с учетом верхнего жилого этажа, мебели наверху, на крыше — осадков, снега, который будет оказывать давление зимой);
  • Шаг (расстояние, через которое укладываются двутавры параллельно один к другому; рекомендуемая величина 1 м, в редких случаях можно увеличить до 1,2 м).

Построение эпюр Q и М

Подробный пример построения эпюр поперечных сил Q и изгибающих моментов M для балки

Внутренние силовые факторы Qy и Mx в пролете балки 0 ≤ z2 ≤ l

QII= — RB+ qz2= -52+30∙z2 QII(z=0)= -52 кН QII(z=l)= -52+30∙4=68 кН

MII=RB∙z2-qz22/2=52z2-30∙z22/2 MII (z=0)= 0 MII (z=l)= -32 кНм

На консоли l ≤ z1≤ (l+a)

QI= — RB+ ql — RA=-52+30∙4-108=-40 кН

MI=RB z1-ql(z1-l/2)+RA(z1-l)=52z1-30∙4(z1-4/2)+108(z1-4) MI (z=l)= -32 кНм MI (z=l+a)= 0

По этим данным построены эпюры Q и М.

Примеры расчетного сопротивления

Для расчета двутавровой балки может потребоваться такая величина, как расчетное сопротивление (Ry). Она зависит от марки стали, из которой произведена балка. Например, приведены готовые величины:

  • С 235 — 230 МПа;
  • С 345 — 335 МПа;
  • С 255 — 250 МПа.

Модуль упругости берут одной величиной, равной для стали: Е = 200 000 МПа. Расчет нагрузки двутавровой балки осуществляется на основе вычислений несущей способности. К этой цифре прибавляют 30% на прочность (это относится лишь к сварным профилям).

Несущая способность ↑

Среди всех типов балок двутавровая имеет наибольшую прочность, более того, она устойчива к температурным перепадам. Допустимая нагрузка на двутавр бывает указана на маркировке, как размер. Чем больше число, указанное в его наименовании, тем большую нагрузку может воспринимать балка.

Любой расчет предполагает изначальное знание размеров прокатного или сварного профиля, его длины и ширины. Проясним смысл значения ширины на примере самой популярной балочной опоры – колонны.

Пример расчета

Предположим, что в сечении колонны лежит квадрат со стороной 510 мм, тогда на нее можно будет опереть профиль, для которого ширина не может превышать 460 мм. Это связано с тем, что двутавр придется приваривать к железобетонной подушке, а для сварочных швов понадобится запас, по крайней мере, в 40 мм.

После определения ширины переходят к выбору профиля и расчету нагрузки, воздействующей на профиль. Она представляет собой совокупность воздействий от перекрытия, а также воздействий временного и постоянного характера.

На заметку

Нагрузку, выражающую величину нормативной нагрузки, собирают на длину 1 м профиля.

Но, расчет несущей способности двутавровой балки предполагает учет другого воздействия. Чтобы получить расчетную нагрузку, рассчитанное нормативное воздействие умножается на так называемый коэффициент прочности по нагрузке. Остается к результату прибавить уже подсчитанную массу изделия и найти его момент сопротивления.

Полученных данных достаточно, чтобы из сортамента подобрать профиль, необходимый для изготовления сварного профиля. Как правило, с учетом прогиба конструкции рекомендуется выбирать профиль выше на два порядка.

Важно

Сварная металлическая конструкция должна использовать примерно 70–80% от максимально допустимого прогиба.

Выбор номера профиля (примеры)

Согласно таблице, по которой осуществляется выбор номера по предполагаемой нагрузке, величины пролета и шага, выбираются следующие модели профилей:

  • Номер 16 (при нагрузке 300 кг/м. п., пролет 6 м, шаг 1 м);
  • Номер 20 (при нагрузке 400 и 500 кг/м. п., пролет 6 м, шаг 1,1 м и 1,2 м);
  • Номер профиля 10 (при нагрузке 300 кг/м. п., пролет 4 м и 3 м, шаг 1 м).


Расчетная нагрузка на двутавровую балку вычисляется так:

  1. 1. Давление на перекрытие, включая вес самого перекрытия, пересчитывается на 1 погонный метр балки.
  2. 2. Полученное число умножается на коэффициент надежности согласно ГОСТ 8239-89.
  3. 3. На основании нагрузки находят момент сопротивления (по таблице основных расчетных значений ГОСТ 8239-89).
  4. 4. По моменту сопротивления определяют номер профиля из сортамента согласно ГОСТ 8239-89. При этом лучше выбирать номер на 2 значения выше.

Следует отметить, что несущая способность учитывает именно расчетную нагрузку, но не нормативную. Также несущая способность берется при расчете на изгиб.

Сбор нагрузок

Для проведения расчетов на предельные состояния по прочности и прогибу определяют все усилия, которые будут воздействовать на двутавр. К ним относятся:

  • Постоянные. Собственный вес металлопрофиля и перекрытия.
  • Временные. К ним относятся три типа усилий: длительные, кратковременные, особые. К длительным, например, относится масса временных перегородок. Кратковременные – вес людей, ветровые, снеговые и другие воздействия. Особые – взрывные, вулканические.

Внимание! В зданиях, в которых угол ската превышает 60°, воздействие снегового покрова в расчет не принимается.

Существует еще одно разделение усилий – на расчетные и нормативные, определяемые нормативной документацией.

Учет марки стали при определении прочности

Когда выполняется вычисление прочности, учитывается марка стали. Для сложных климатических условий двутавровая балка изготавливается из не хрупкой стали. Лучше выбирать максимально прочные марки. Здесь следует учитывать, что изделие более высокой прочности может иметь габариты меньше и, значит, величина допустимого давления будет меньше.

Именно поэтому грамотный расчет прочности выполняется в нескольких разных вариантах, затем параметры сравнивают. Для определения прочности надо разложить прилагаемую силу по осям и определить максимальные моменты вокруг этих осей.

Расчет прогибов балки

Посмотрим, как пользоваться методом начальных параметров на примере простой балки, которая загружена всевозможными типами нагрузок, чтобы максимально охватить все тонкости этого метода:

Реакции опор

Для расчета нужно знать все внешние нагрузки, действующие на балку, в том числе и реакции, возникающие в опорах.

Система координат

Далее вводим систему координат, с началом в левой части балки (точка А):

Распределенная нагрузка

Метод начальных параметров, который будем использовать чуть позднее, работает только в том случае, когда распределенная нагрузка доходит до крайнего правого сечения, наиболее удаленного от начала системы координат. Конкретно, в нашем случае, нагрузка обрывается и такая расчетная схема неприемлема для дальнейшего расчета.

Если бы нагрузка была приложена вот таким способом:

То можно было бы сразу приступать к расчету перемещений. Нам же потребуется использовать один хитрый прием – ввести дополнительные нагрузки, одна из которых будет продолжать действующую нагрузку q, другая будет компенсировать это искусственное продолжение. Таким образом, получим эквивалентную расчетную схему, которую уже можно использовать в расчете методом начальных параметров:

Читать также: В каком году изобрели лампочку накаливания

Вот, собственно, и все подготовительные этапы, которые нужно сделать перед расчетом.

Приступим непосредственно к самому расчету прогиба балки. Рассмотрим наиболее интересное сечение в середине пролета, очевидно, что это сечение прогнется больше всех и при расчете на жесткость такой балки, рассчитывалось бы именно это сечение. Обзовем его буквой – C:

Относительно системы координат записываем граничные условия. Учитывая способ закрепления балки, фиксируем, что прогибы в точках А и В равны нулю, причем важны расстояния от начала координат до опор:

Записываем уравнение метода начальных параметров для сечения C:

Произведение жесткости балки EI и прогиба сечения C будет складываться из произведения EI и прогиба сечения в начале системы координат, то есть сечения A:

Напомню, E – это модуль упругости первого рода, зависящий от материала из которого изготовлена балка, I – это момент инерции, который зависит от формы и размеров поперечного сечения балки. Также учитывается угол поворота поперечного сечения в начале системы координат, причем угол поворота дополнительно умножается на расстояние от рассматриваемого сечения до начала координат:

Учет внешней нагрузки

И, наконец, нужно учесть внешнюю нагрузку, но только ту, которая находится левее рассматриваемого сечения C. Здесь есть несколько особенностей:

  • Сосредоточенные силы и распределенные нагрузки, которые направленны вверх, то есть совпадают с направлением оси y, в уравнении записываются со знаком «плюс». Если они направленны наоборот, соответственно, со знаком «минус»:
  • Моменты, направленные по часовой стрелке – положительные, против часовой стрелки – отрицательные:
  • Все сосредоточенные моменты нужно умножать дробь:

[ Mcdot frac < < x >^ < 2 >>< 2 >]

  • Все сосредоточенные силы нужно умножать дробь:

[ Fcdot frac < < x >^ < 3 >>< 6 >]

  • Начало и конец распределенных нагрузок нужно умножать на дробь:

Формулы прогибов

С учетом всех вышеописанных правил запишем окончательное уравнение для сечения C:

В этом уравнении содержится 2 неизвестные величины – искомый прогиб сечения C и угол поворота сечения A.

Поэтому, чтобы найти прогиб, составим второе уравнение для сечения B, из которого можно определить угол поворота сечения A. Заодно закрепим пройденный материал:

Выражаем угол поворота:

Подставляем это значение в наше первое уравнение и находим искомое перемещение:

Вычисление прогиба

Значение получили в общем виде, так как изначально не задавались тем, какое поперечное сечение имеет рассчитываемая балка. Представим, что металлическая балка имеет двутавровое поперечное сечение №30. Тогда:

Таким образом, такая балка прогнется максимально на 2 см. Знак «минус» указывает на то, что сечение переместится вниз.

Рассчитывать балку на изгиб

можно несколькими вариантами: 1. Расчет максимальной нагрузки, которую она выдержит 2. Подбор сечения этой балки 3. Расчет по максимальным допустимым напряжениям (для проверки)

Давайте рассмотрим общий принцип подбора сечения балки

на двух опорах загруженной равномерно распределенной нагрузкой или сосредоточенной силой.

Для начала, вам необходимо будет найти точку (сечение), в которой будет максимальный момент. Это зависит от опирания балки или же ее заделки. Снизу приведены эпюры изгибающих моментов для схем, которые встречаются чаще всего.

Далее, при делении максимального изгибающего момента на момент сопротивления в данном сечении, мы получаем максимальное напряжение в балке и это напряжение мы должны сравнить с напряжением, которое вообще сможет выдержать наша балка из заданного материала.

Читать также: Клепальник для профиля гипсокартона

Для пластичных материалов

(сталь, алюминий и т.п.) максимальное напряжение будет равно пределу текучести материала , а
для хрупких
(чугун) – пределу прочности . Предел текучести и предел прочности мы можем найти по таблицам ниже.

Давайте рассмотрим пару примеров:

1. Вы хотите проверить, выдержит ли вас двутавр №10 (сталь Ст3сп5) длиной 2 метра жестко заделанного в стену, если вы на нем повисните. Ваша масса пусть будет 90 кг.

Для начала нам необходимо выбрать расчетную схему.

На данной схеме видно, что максимальный момент будет в заделке, а поскольку наш двутавр имеет одинаковое сечение по всей длине , то и максимальное напряжение будет в заделке. Давайте найдем его:

По таблице сортамента двутавров находим момент сопротивления двутавра №10.

Он будет равен 39.7 см3. Переведем в кубические метры и получим 0.0000397 м3.

Далее по формуле находим максимальные напряжения, которые у нас возникают в балке.

После того, как мы нашли максимальное напряжение, которое возникает в балке, то мы его может сравнить с максимально допустимым напряжением равным пределу текучести стали Ст3сп5 – 245 МПа.

45.34 МПа Надеюсь, что данная статья была вам полезна, и рассчитываю на вашу благодарность

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]