Химические и физические свойства железа, применение


Начало истории железа

В третьем тысячелетии до н. э. люди стали добывать и научились обрабатывать бронзу и медь. Широкого применения из-за дороговизны они не получили. Продолжались поиски нового металла. История железа началась в первом веке до н. э. В природе его можно встретить только в виде соединений с кислородом. Для получения чистого металла необходимо отделить последний элемент. Расплавить железо долго не удавалось, так как его надо было нагреть до 1539 градусов. И только с появлением сыродутных печей в первом тысячелетии до новой эры стали получать этот металл. На первых порах он был хрупким, содержал много шлаков.


С появлением горнов качество железа значительно улучшилось. Дальнейшую обработку оно проходило в кузнеце, где ударами молота отделялся шлак. Ковка стала одним из главных видов обработки металла, а кузнечное дело незаменимой отраслью производства. Железо в чистом виде – это очень мягкий металл. В основном его используют в сплаве с углеродом. Эта добавка усиливает такое физическое свойство железа, как твердость. Дешевый материал вскоре широко проник во все сферы деятельности человека и сделал переворот в развитии общества. Ведь еще в древние времена железные изделия покрывались толстым слоем золота. Оно имело высокую цену по сравнению с благородным металлом.

Железо в природе

Одного алюминия в литосфере содержится больше, чем железа. В природе его можно встретить только в виде соединений. Трехвалентное железо, вступая в реакцию, окрашивает почву в бурый цвет и придает песку желтоватый оттенок. Оксиды и сульфиды железа разбросаны в земной коре, иногда наблюдаются скопления минералов, из которых впоследствии и добывают металл. Содержание двухвалентного железа в некоторых минеральных источниках придает воде особый привкус.


Ржавая вода, текущая из старых водопроводных труб, окрашивается за счет трехвалентного металла. Его атомы находятся и в организме человека. Они содержатся в гемоглобине (железосодержащем белке) крови, который снабжает организм кислородом и выводит углекислый газ. В составе некоторых метеоритов содержится чистое железо, иногда встречаются целые слитки.

Кристаллическое строение

МАТЕРИАЛОВЕДЕНИЕ

Вещества могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Переход из твёрдого состояния в газообразное называется сублимацией.

Все металлы являются телами кристаллическими.

Для каждого металла характерна своя пространственно- кристаллическая решетка с дальним порядком расположения атомов (определенное расположение атомов на любом расстоянии).

В твердых телах порядок расположения атомов закономерен. Расположение атомов можно представить в виде элементарных кристаллических ячеек. Всего существует 14 типов решеток: для металлов характерны 3 типа:

Какими физическими свойствами железо обладает?

Это пластичный серебристо-белого цвета металл с сероватым оттенком, имеющий металлический блеск. Он является хорошим проводником электрического тока и теплоты. Благодаря пластичности он прекрасно поддается ковке и прокатке. Железо не растворяется в воде, но разжижается в ртути, плавится при температуре 1539 и кипит при 2862 градусов по Цельсию, имеет плотность 7,9 г/см³. Особенностью физических свойств железа является то, что металл притягивается магнитом и после аннулирования внешнего магнитного поля хранит намагниченность. Используя эти свойства его можно применять для изготовления магнитов.

Кристаллическое строение металлов. Типы кристаллических решеток

Когда металл образует твердую структуру, то все его атомы стремятся занять такие положения в пространстве относительно друг друга, чтобы они соответствовали минимуму потенциальной энергии. Этому минимуму соответствует кристаллическая решетка.

Под кристаллической решеткой понимают такую пространственную атомную структуру, которая может быть получена, если известны координаты ограниченного числа ее атомов и вектора их трансляции в пространстве. Указанное число атомов называется базисом решетки, а их положения образуют так называемую элементарную ячейку.

Все металлы кристаллизуются в трех основных типах решеток:

  • гранецентрированная кубическая (ГЦК);
  • объемно-центрированная кубическая (ОЦК);
  • гексагональная плотноупакованная (ГПУ).

Благодаря кристаллическому строению металлы обладают такими свойствами, как пластичностью, упругостью и металлическим блеском.

Химические свойства

Железо обладает следующими свойствами:

  • на воздухе и в воде легко окисляется, покрываясь ржавчиной;
  • в кислороде накаленная проволока горит (при этом образуется окалина в виде оксида железа);
  • при температуре 700–900 градусов по Цельсию вступает в реакцию с парами воды;
  • при нагревании реагирует с неметаллами (хлором, серой, бромом);
  • вступает в реакции с разбавленными кислотами, в результате получаются соли железа и водород;
  • не растворяется в щелочах;
  • способно вытеснить металлы из растворов их солей (железный гвоздь, в растворе медного купороса, покрывается красным налетом, — это выделяется медь);
  • в концентрированных щелочах при кипячении проявляется амфотерность железа.

Начнем с простых

Феррум вступает во взаимодействие с килородом, азотом, галогенами (йодом, бромом, хлором, фтором), фосфором, карбоном. Первое, что нужно рассмотреть, — реакции с оксигеном. При сжигании феррума образуются его оксиды. В зависимости от условий проведения реакции и пропорций между двумя участниками они могут быть разнообразными. Как пример такого рода взаимодействиям можно привести следующие уравнения реакций: 2Fe + O2 = 2FeO; 4Fe + 3O2 = 2Fe2O3; 3Fe + 2O2 = Fe3O4. И свойства оксида железа (как физические, так и химические) могут быть разнообразными, в зависимости от его разновидности. Такого рода реакции происходят при высоких температурах.

Следующее — взаимодействие с азотом. Оно также может произойти только при условии нагревания. Если взять шесть молей железа и один моль азота, получим два моля нитрида железа. Уравнение реакции будет выглядеть следующим образом: 6Fe + N2 = 2Fe3N.

При взаимодействии с фосфором образуется фосфид. Для проведения реакции необходимы такие компоненты: на три моля феррума — один моль фосфора, в результате образуется один моль фосфида. Уравнение можно записать следующим образом: 3Fe + P = Fe3P.

Кроме того, среди реакций с простыми веществами можно также выделить взаимодействие с серой. При этом можно получить сульфид. Принцип, по которому происходит процесс образования данного вещества, подобен описанным выше. А именно происходит реакция присоединения. Для всех химических взаимодействий подобного рода нужны специальные условия, в основном это высокие температуры, реже — катализаторы.

Также распространены в химической промышленности реакции между железом и галогенами. Это хлорирование, бромирование, йодирование, фторирование. Как понятно из названий самих реакций, это процесс присоединения к атомам феррума атомов хлора/брома/йода/фтора с образованием хлорида/бромида/йодида/фторида соответственно. Данные вещества широко используются в разнообразных отраслях промышленности. Кроме того, феррум способен соединяться с кремнием при высоких температурах. Благодаря тому что химические свойства железа разнообразны, его часто используют в химической отрасли промышленности.

Особенность свойств

Одним из физических свойств железа является ферромагнитность. На практике с магнитными свойствами этого материала приходится встречаться часто. Это — единственный металл, который обладает такой редкостной чертой.


Под действием магнитного поля происходит намагничивание железа. Сформировавшиеся магнитные свойства металл еще долго сохраняет и сам остается магнитом. Такое исключительное явление объясняется тем, что структура железа содержит большое количество свободных электронов, способных передвигаться.

Запасы и добыча

Одним из самых распространенных элементов на земле является железо. По содержанию в земной коре занимает четвертое место. Известно множество руд, которые содержат его, например, магнитный и бурый железняк. Металл в промышленности получают в основном из руд гематита и магнетита при помощи доменного процесса. Вначале происходит его восстановление углеродом в печи при высокой температуре 2000 градусов по Цельсию.


Для этого сверху в доменную печь подают железную руду, кокс и флюс, а снизу нагнетается поток горячего воздуха. Также применяют и прямой процесс получения железа. Измельченную руду перемешивают со специальной глиной, получая окатыши. Далее их обжигают и с помощью водорода обрабатывают в шахтной печи, где оно легко восстанавливается. Получают твердое железо, а потом переплавляют его в электрических печах. Чистый металл восстанавливают из оксидов при помощи электролиза водных растворов солей.

Прочность алюминия

Отожженная фракция технического алюминия при комнатной температуре отличается пределом прочности до 8 кг/мм2. Повышение чистоты материала увеличивает его пластичность, но отражается на снижении прочности. В качестве примера можно взять алюминий, показатель чистоты которого составляет 99,99%. В данном случае предельная прочность материала достигает около 5 кг/мм2.

Уменьшение предела прочности алюминиевой тестовой заготовки наблюдается при ее нагревании во время проведения испытаний на растяжение. В свою очередь, снижение температуры металла в пределах от +27 до -260оС временно повышает исследуемый показатель в 4 раза, а при испытании фракции алюминия высочайшей чистоты – в целых 7 раз. В то же время несколько повысить прочность алюминия можно методом его легирования.

Преимущества железа

Основные физические свойства вещества железа дают ему и сплавам следующие преимущества перед другими металлами:

  • Обладают твердостью и прочностью, сохраняя упругость. У разных сплавов эти качества неодинаковы и зависят от легирующих добавок, способов производства и термообработки.
  • Большое разнообразие чугуна и сталей позволяют использовать их для любых нужд в народном хозяйстве.
  • Высокие магнитные свойства металла незаменимы для изготовления магнитопроводов.

  • Выполнимость легкой механической обработки, благодаря физическим свойствам железа, дает возможность из его сплавов получать листы, прутки, балки, трубы, фасонные профили.
  • Значительная ковкость материала позволяет использовать его для декоративных изделий.
  • Низкая стоимость сплавов.

Недостатки

Кроме большого числа положительных качеств, есть и ряд отрицательных свойств металла:

  • Изделия подвержены коррозии. Для устранения этого нежелательного эффекта с помощью легирования получают нержавеющие стали, а в остальных случаях делают специальную антикоррозийную обработку конструкций и деталей.
  • Железо накапливает статическое электричество, поэтому изделия, содержащие его, подвергаются электрохимической коррозии и также требуют дополнительной обработки.
  • Удельный вес металла составляет 7,13 г/см³. Это физическое свойство железа придает конструкциям и деталям повышенный вес.

Состав и структура

У железа по кристаллическому признаку есть четыре модификации, которые отличаются структурой и параметрами решетки. Для выплавки сплавов именно наличие фазовых переходов и легирующих добавок имеет существенное значение. Различают следующие состояния:

  • Альфа-фаза. Она сохраняется до 769 градусов по Цельсию. В этом состоянии железо сохраняет свойства ферромагнетика и обладает объемно-центрированной решеткой кубического типа.
  • Бета-фаза. Существует при температуре от 769 до 917 градусов по Цельсию. Имеет немного другие параметры решетки, чем в первом случае. Все физические свойства железа остаются прежними за исключением магнитных, их оно утрачивает.
  • Гамма-фаза. Строение решетки становится гранецентрированным. Такая фаза проявляется в диапазоне 917–1394 градусов Цельсия.
  • Омега-фаза. Такое состояние металла появляется при температуре выше 1394 градусов Цельсия. От прежней отличается только параметрами решетки.


Железо – самый востребованный металл в мире. Больше 90 процентов всего металлургического производства приходится именно на него.

Прочность меди

В обычных условиях комнатной температуры отожженная техническая медь обладает пределом прочности порядка 23 кг/мм2. При значительных температурных нагрузках на материал его предельная прочность существенно снижается. На показателях предельной прочности меди отражается наличие в металле всевозможных примесей, которые могут как повышать данный показатель, так и приводить к его снижению.

Применение

Люди начали использовать сначала метеоритное железо, которое ценили выше золота. С тех пор область применения этого металла только расширялась. Ниже представлено применение железа, на основе его физических свойств:

  • ферромагнитные оксиды используют для производства магнитных материалов: промышленных установок, холодильников, сувениров;
  • оксиды железа применяют как минеральные краски;
  • хлорид железа незаменим в радиолюбительской практике;
  • сульфаты железа используют в текстильной промышленности;
  • магнитная окись железа – один из важных материалов для производства устройств долговременной компьютерной памяти;
  • ультрадисперсный порошок железа находит применение в черно-белых лазерных принтерах;
  • прочность металла позволяет изготовлять оружие и броню;
  • износостойкий чугун можно использовать для производства тормозов, дисков сцепления, а также деталей для насосов;
  • жаростойкий – для доменных, термических, мартеновских печей;
  • жаропрочный – для компрессорного оборудования, дизельных двигателей;
  • высококачественная сталь используется для газопроводов, корпуса отопительных котлов, сушилок, стиральных и посудомоечных машин.
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]