Электрохимическое хромирование. Блестящее, твердое хромирование

Предприятие оказывает услуги по хромированию деталей из любых марок сталей, алюминиевых сплавов и титана. Возможно хромирование деталей длиной до 1000 мм. и массой до 50 кг.

Толщина хромового покрытия от 1 мкм. Стоимость хромирования от 150 руб. за 1 дм2. Для оформления заказа на хромирование необходимо направить в наш адрес чертежи изделий и количество. Стоимость нанесения хрома рассчитывается исходя из площади поверхности обрабатываемых деталей, а также толщины покрытия. Качество хромирования Вы можете оценить, заказав обработку пробной партии изделий.

  • Обрабатываемые материалы: стали любых марок, сплавы алюминия, титан.
  • Габаритные размеры изделий (ДхШхВ): 1000мм.х500мм.х500мм.
  • Требования к поверхности металла: чистая без следов ржавчины и окалины.
  • Цена хромирования: рассчитывается индивидуально, от 150 руб. за 1 дм2.

Хромирование в теории и на практике

Хром – металл серебристо-белого цвета с синеватым оттенком. Атомная масса хрома – 52,0, валентность – 2, 3, 6, плотность – 7,1 г/см3, температура плавления – 18900С. Твердость хромового покрытия варьируется в пределах от 3 до 18ГПа и зависит от состава электролита и режима техпроцесса.

Хромирование занимает особое место среди гальванических покрытий и находит применение во многих областях. К достоинствам хромирования относят высокую твердость покрытия (в среднем выше чем у закаленной стали), стойкость хромированных деталей к коррозии и воздействию агрессивной среды, жаростойкость, а также красивый внешний вид.


Хромированная деталь автомобиля

В зависимости от назначения хромовые покрытия подразделяют на декоративные и функциональные. Декоративные покрытия наносят в виде тонкого (менее 1 мкм) слоя на подслой меди или никеля. Обработанные таким образом изделия кроме привлекательного внешнего вида (блестящий светлый металлик) приобретают стойкость к коррозии. Функциональные покрытия наносят непосредственно на металл, толщина таких покрытий может достигать нескольких миллиметров. Практическое применение функционального хромирования – покрытие инструмента, шаблонов, пресс-форм, ремонт изношенных деталей, снижение трения сопряженных деталей и т. д. Хром устойчив во влажной атмосфере, в сероводороде, растворах щелочей, азотной кислоты и органических кислот. В атмосфере из-за сильно выраженной способности к пассивации хром длительное время сохраняет цвет и блеск. Существуют черные хромовые покрытия, которые, в основном, применяются для придания изделиям защитно-декоративных свойств.

Особенности процесса хромирования

Процесс хромирования имеет ряд отличительных особенностей:

  1. Электролиты, используемые при хромировании, имеют крайне низкую рассеивающую способность, в связи с чем, на углубленные поверхности изделий (отверстия, пазы, канавки) хром осаждается значительно медленнее.
  2. Концентрация тока на выступающих элементах изделий приводит к осаждению на них более толстого слоя хрома. Для уменьшения неравномерности распределения плотности тока на таких участках применяется алюминиевая или свинцовая фольга или проволока.
  3. В процессе хромирования необходимо точно соблюдать технологический режим – температуру электролита и плотность тока.
  4. Изделия из углеродистых сталей перед процессом хромирование подвергаются анодному декапированию в хромовом электролите в течении 3-5 минут.
  5. Начало процесса хромирования (примерно 1-2 минуты) необходимо проводить при вдвое повышенной плотности тока.
  6. На поверхность азотированной стали хром не осаждается. Перед хромированием необходимо удаление азотированного слоя.
  7. Изделия после полировки или предварительно никелированные изделия необходимо хромировать незамедлительно. В противном случае требуется обработка (глянцевание) поверхности окисью алюминия.
  8. Изделия из меди и латуни перед погружением в раствор электролита необходимо нагреть в горячей воде. Погружение в электролит осуществляется под током.
  9. Изделия после электрополировки предварительно протравливают в растворе соляной кислоты.

Как и другие типы покрытий хромирование требует предварительной подготовки поверхности. Кроме очевидной необходимости в очистке поверхности изделия от загрязнений, остатков смазки, шлака и т. д. деталь перед хромированием подвергается механической обработке для получения определенного класса чистоты поверхности. Блестящее хромирование требует класс чистоты не менее 5, для обычного хромирования достаточно 3-го класса, медные и латунные изделия должны иметь 4-й класс.

Подробнее с информацией по подготовке поверхности изделия к гальванической обработке, шероховатости поверхности и классам чистоты можно ознакомиться в статье.

Отдельные участки изделия, хромирование которых не требуется изолируют с помощью цапон лака (раствор целлулоида в ацетоне). Лак наносят кистью в несколько слоев, каждый слой перед нанесением последующего сушат. После нанесения покрытия слой изоляции удаляется механически.

Состав электролитов и режимы хромирования

Состав электролита и режим работы Электролит А Электролит В Электролит С
Хромовый ангидрид, г/л 150 250 350
Серная кислота, г/л 1,5 2,5 3,5
Температура хромирования, 0С 55-60 45-55 35-45
Катодная плотность тока, а/дм2 45-100 15-60 10-30
Напряжение, в 12 12 12
Выход по току, % 16-18 13-15 10-15
Рассеивающая способность Высокая Средняя Низкая

Как видно из таблицы, электролит для хромирования представляет собой смесь из хромового ангидрида и серной кислоты. Содержание серной кислоты составляет примерно 1% от содержания ангидрида.

  • Электролит А – электролит для твердого хромирования изделий простой формы. Истощение электролита происходит с высокой скоростью. Осадки имеют большую толщину с наростами на краях.
  • Электролит В – электролит для широкого интервала блестящих покрытий, применяется для декоративного, твердого и пористого хромирования стали, никеля, меди и других металлов.
  • Электролит С – электролит декоративного покрытия меди и никеля с низкой скоростью истощения.

Основные электролиты и режимы хромирования деталей.

В зависимости от режима электролиза и состава электролита могут быть получены осадки хрома с различными свойствами. В зависимости от условий электролиза образуются три типа хромовых покрытий:

  • Серые осадки (обладают низкими физико-химическими свойствами и не находят практического применения);
  • Блестящие осадки (отличаются высокими значениями твердости и износостойкости);
  • Молочные осадки (наименее пористые и наиболее пластичные).

Кроме этого, из специальных типов электролита можно получать черные покрытия.

3.1 Универсальный раствор для хромирования.

Как правило, на практике применяют «универсальные» сульфатные электролиты хромирования. К ним относят: разбавленный, стандартный и концентрированный электролиты. Все перечисленные электролиты хромирования содержат хромовые кислоты Н2СrО4 и Н2Сr2О7 соответственно и анионы SO42- в виде серной кислоты, а также соединения трехвалентного хрома. Характеристика электролитов приведена в таблице 1.

Таблица 1 — Характеристика сульфатных электролитов хромирования.

Тип электролита Концентрация, г/л Характеристика
CrO3 H2SO4
Разбавленный 150-175 1,5-1,75 Выход по току 16-18 %. Рассеивающая способность наиболее высока. Твердость осадков самая высокая. Состав электролита в процессе работы меняется быстро, в том числе соотношение компонентов. Склонность к образованию шероховатых осадков при осаждении толстых слоев.
Стандартный 220-250 2,2-2,5 Выход по току 12-14%. Рассеивающая способность средняя. Рабочий интервал получения блестящих осадков широкий. Состав электролита меняется медленно, колебания в соотношении компонентов незначительны. Твердость осадков высокая.
Концентрированный 275-300 2,75-3,0 Выход по току 8-10%. Рассеивающая способность низкая. Электролит стабилен. Рабочий интервал получения блестящих осадков широкий. Твердость осадков самая низкая.

В таблице 2 приведены данные по электропроводности электролитов хромирования в зависимости от концентрации хромового ангидрида при различных температурах.

Таблица 2 — Электропроводность электролитов хромирования.

Концентрация CrO3, г/л 100 200 300 400
Удельная электропроводность, См/м при температуре 25° C 31,5 51,3 61,6 66,7
Удельная электропроводность, См/м при температуре 45° C 38,9 63,2 76,3 81,8

Разбавленный электролит позволяет получать осадки хрома высокой твердости с относительно высокими величинами выхода по току, но при этом из него получают шероховатые осадки при осаждении толстых слоев (от 100-150 мкм и более). Кроме того, омические потери напряжения в разбавленном электролите самые высокие (электропроводность низка и находится в пределах 50 См/м), что напрямую сказывается на удельных затратах электроэнергии при хромировании.

Стандартный электролит хромирования применяется на практике наиболее часто. При средних величинах выхода по току, токовых режимах хромирования 3000-6000 А/м2 и температурах 45-70° C из этого электролита осаждают толстые осадки до 300 мкм при меньших затратах электроэнергии за счет более высокой электропроводности (таблица 2), чем из разбавленного электролита. Кроме того, при температурах 45-55 °C твердость у покрытий, получаемых из разбавленных электролитов, не отличается от твердости хромовых покрытий, полученных из стандартных электролитов.

Концентрированные электролиты применяются достаточно редко, так как характеризуются низкими выходами по току при осаждении хрома и низкими твердостями осадков (практически не пригодны для износостойкого хромирования).

Следует отметить, что во всех электролитах хромирования с повышением температуры снижается величина выхода по току и увеличивается наводороживание стальной подложки. Наводороживание происходит из-за того, что одновременно с выделением хрома на покрываемой детали происходит выделение водорода, причем на этот процесс тратится большая часть тока. Наводороживание стальной основы отрицательно влияет на ее физико-механические свойства. Наиболее активно водород внедряется в металл в начальный период, когда еще не образовался сплошной слой хрома. При повышении температуры от 55о до 75° C масса поглощенного водорода увеличивается в 6-10 раз.

Величина выхода по току во всех электролитах хромирования уменьшается с повышением концентрации хромового ангидрида. Но повышенные концентрации хромового ангидрида позволяют работать при более высоких плотностях тока и за счет повышения плотности тока интенсифицировать процесс хромирования и увеличить величину выхода по току.

3.2 Тетрахроматный электролит хромирования.

Этот электролит отличается от универсальных тем, что хромовая кислота нейтрализуется щелочью и находится в виде тетрахромата натрия. Электролит рекомендуется применять в случаях:

  • нанесения защитно-декоративных покрытий без подслоя меди и никеля. Толщина хромового покрытия при этом должна находиться в пределах 10-15 мкм;
  • восстановления деталей хромированием, когда не требуется высокой твердости и блестящей поверхности;
  • хромирования деталей со сравнительно сложной конфигурацией.

Возможность непосредственно наносить хром из тетрахроматных электролитов на сталь, латунь и цинковые сплавы объясняется тем, что в результате нейтрализации хромовой кислоты агрессивность раствора заметно снижается. В электролите образуется тетрахромат натрия по реакции:

2 NaOH + 4CrO3 = [Na2CrO(CrO4)3] + H2O

Для нормального протекания процесса необходимо поддерживать определенное соотношение между концентрацией Сr6+ и Cr3+. Это соотношение регулируется количеством вводимого восстановителя.

Вследствие высокой плотности тока электролит сильно нагревается. Во избежание разложения тетрахромата, который при температуре, превышающей 24о С, неустойчив, электролит следует охлаждать.

Выход по току в этом электролите составляет примерно 30%. При низких плотностях тока 10-25 А/дм2 осадки мягкие, матовые, cерые, с небольшими внутренними перенапряжениями. С ростом плотности тока выход по току заметно возрастает, с повышением температуры выход по току падает.

3.3 Саморегулирующийся электролит хромирования.

Хромирование в электролитах с добавками серной кислоты имеет ряд недостатков. Выход металла по току низкий. Обычно он колеблется в пределах 10-12%, состав электролита, в частности отношение CrO3 / H2SO4, в процессе работы изменяется. Последний недостаток устранен в саморегулирующихся электролитах для хромирования.

Принцип саморегулирования основан на том, что у вводимых в электролит солей сернокислого стронция и кремнефторида калия ограниченная растворимость.

Эти соли, находясь в электролите в количестве, превышающем их растворимость, при изменении концентрации ионов SO42- и SiF62- в растворе автоматически восстанавливается их соотношение.

Саморегулирующиеся электролиты менее чувствительны к изменению температуры, чем обычные сернокислые электролиты. Кроме того, они сравнительно малочувствительны к загрязнению раствора железом, медью и другими металлами. Ограничивает распространение этих электролитов то, что саморегулирующиеся электролиты оказывают растравливающее действие на некоторые металлы, в том числе и железо.

Наряду с перечисленными электролитами для холодного хромирования используется сульфатно-фторидный электролит.

Приготовление и корректировка электролита

Для приготовления электролита используется дистиллированная вода. Состав готовится непосредственно в ванне хромирования – рассчитанное количество хромового ангидрида растворяют, после чего производится замер количества серной кислоты, попавшей в раствор (хромовый ангидрид имеет незначительные примеси серной кислоты). По результатам анализа в раствор добавляют недостающее количество серной кислоты, раствор тщательно перемешивают. Перед тем как приступить к процессу хромирования электролит проходит проработку током при использовании свинцовых анодов и стальных катодов. Температура процесса подготовки 45-600С, плотность тока такая же, как при хромировании. Подготовка проводится с целью накопления в гальванической ванне 2-3% трехвалентного хрома, что требует от 2-х до 6-ти часов. Содержание трехвалентного хрома не должно превышать указанной величины, так как в обратном случае качество покрытия снижается. Анализ состава электролита проводят обычно не реже одного раза в неделю. При необходимости производится его корректировка. Содержание хромового ангидрида в электролите проверяется каждую смену. Замер удельного веса электролита производят с помощью ареометра, затем, по специальной таблице определяют содержание ангидрида.

Рассмотрим подробнее виды покрытия хромом.

Защитно-декоративное хромирование

Как сказано ранее защитно-декоративное хромирование предназначено для придания изделиям красивого внешнего вида – блестящей металлической поверхности и повышению коррозионной стойкости.

Широкое применение защитно-декоративное хромирование находит в автомобильной промышленности. Трудно представить себе классический автомобиль или классический чоппер без хромированных деталей интерьера или экстерьера. В современных автомобилях количество хрома значительно меньше, но почти все мастерские по тюнингу предлагают достаточно востребованные услуги по нанесению хромового покрытия на различные элементы автомобилей или мотоциклов. Множество мастерских занимаются хромированием автомобильных дисков, многие предлагают услуги по восстановлению изношенных деталей автомобилей и мотоциклов, придания им первоначального красивого внешнего вида. Если применять твердое хромирование, то время службы отдельных деталей и узлов может быть значительно увеличена (твердость хромового покрытия значительно выше твердости стали). Довольно распространено нанесение хромовых покрытий химическим способом, но только при электролитическом хромировании возможно получить покрытие, которое не только выглядит привлекательно, но и обладает повышенной стойкостью к воздействию агрессивной среды (грязь, песок, реагенты) и к постоянным механическим воздействиям.

Еще одной сферой применения декоративного хромирования является изготовление торгового, рекламного и выставочного оборудования. В качестве примера можно привести хромирование металлических торговых корзин, тележек или подвесов – изделия получают значительно более высокие эксплуатационные и декоративные характеристики по сравнению с оцинкованными. Повышенная цена по сравнению с оцинкованными изделиями (примерно на 30-50%) нивелируется значительным увеличением срока службы, а при изготовлении выставочного оборудования привлекательный, яркий внешний вид зачастую становится основным критерием в выборе покрытия.

Для получения качественного защитно-декоративного покрытия на сталь сначала осаждают медь и никель, и только потом непосредственно хром. Каждый слой перед нанесением следующего должен быть отполирован. Слой меди осаждают до получения покрытия толщиной 10-15 мк при этом необходимо обеспечить припуск на полировку толщиной примерно 3 мк, при толщине слоя меди выше 15 мк припуск должен быть не менее 7 мк. Слой никеля толщиной 15 мк должен иметь припуск от 2 до 5 мк. Возможно нанесение хрома непосредственно на поверхность стали, при этом толщина слоя должна составлять не менее 40 мк.

Изделия из цветных металлов – меди или латуни перед хромированием покрывают слоем никеля. Если эксплуатация таких изделий не предусматривает интенсивного механического воздействия на их поверхность, то возможно нанесение слоя хрома непосредственно на металл.

Катодно-механическое хромирование (гальвано-хонингование).

Анализ современных литературных источников, освещающих вопросы интенсификации процессов хромирования, а также современных российских технологий хромирования показал, что наносить блестящие хромовые покрытия на цилиндрические детали или детали типа «шток» из стандартного сульфатного электролита при плотностях тока 3000-6000 А/м2 и температурах электролита 45-70 °C позволяет технология катодно-механического хромирования (КМХ) или гальвано-хонингования. Данная технология разработана специалистами ФГУП «ЦНИИМ» (г. Санкт-Петербург).

Технология КМХ предполагает хромирование цилиндрических деталей с одновременным механическим (абразивным) воздействием на катодную поверхность, то есть совмещение процесса хромирования с хонингованием или притиркой поверхности специальными полирующими элементами. По оценкам разработчиков износостойкость хромовых покрытий, полученных с применением технологии КМХ, по сравнению с покрытиями, полученными стандартным хромированием цилиндрических деталей, возрастает в 2-4 раза [4]. Кроме того, применение катодно-механического хромирования позволяет получать толстослойные хромовые покрытия (толщиной свыше 100 мкм) с шероховатостью, соответствующей высоким классам чистоты обработки поверхности (не ниже 9 класса) без промежуточной механической обработки.

Суть процесса гальвано-хонингования — постоянная принудительная корректировка формирования поверхности в процессе хромирования полирующими элементами. Это позволяет предотвратить укрупнение неровностей с ростом толщины осадка на формируемой поверхности, предотвратить неравномерность распределения покрытия по толщине, сохранить мелкокристаллическую структуру осадка хрома (сохранение условий плоского фронта роста осадка). Другими словами, при технологии КМХ производят принудительное «выглаживание» формирующегося и растущего слоя осадка хрома на микроскопическом уровне.

Выводы специалистов-разработчиков КМХ из анализа существующих в России основных технологий хромирования цилиндрических длинномерных деталей типа «шток» свидетельствуют о следующем:

  • При стандартном хромировании цилиндрических деталей для достижения необходимого класса чистоты обработки поверхности требуется механическая доводка поверхности по хрому (на дорогостоящем оборудовании), которая, как правило, снижает эксплуатационные характеристики хромового покрытия (пригары, задиры, трещины);
  • При КМХ формируется покрытие с шероховатостью, соответствующей классу чистоты обработки поверхности на 2-3 единицы выше исходной чистоты обработки подложки. При этой технологии не требуется дальнейшей механической обработки хромовых покрытий, предотвращается дендритообразование, соответственно сохраняются высокие функциональные свойства хрома.

Технологические параметры и состав электролита стандартной технологии хромирования деталей не противоречат принципам технологии КМХ. Следует отметить, что гальвано-хонингование не является одновременным совмещением процесса хромирования и шлифовки поверхности, так как притирочные блоки постоянно перемещают по катодной поверхности, периодически выравнивая и полируя катодную поверхность, не истирая часть слоя хрома как при шлифовке.

Твердое хромирование

Основная сфера применения твердого хромирования — это изготовление инструмента или деталей, подверженных в процессе эксплуатации интенсивным механическим воздействиям. Применение твердого хромирования значительно увеличивает твердость, износостойкость и срок службы инструмента и деталей, работающих на износ. Одним из требований к твердому хромированию является обязательное условие – стальная основа при нанесении таких покрытий должна быть твердой и закаленной.


Хромированный инструмент

Приведем рекомендуемые толщины твердого хромового покрытия для различных типов изделий: режущий инструмент – 5-8 мк, матрицы и пуансоны прессового оборудования – 50-100 мк, пресс-формы для пластмассы – 10-20 мк, ремонтное хромирование автозапчастей – до 200 мк.

Мерное хромирование

Осаждение хрома на поверхности изделия происходит с небольшой скоростью. Благодаря этому есть возможность выдерживать точные значения толщины слоя. Точность может быть доведена до 1 мк. Вышеперечисленное делает возможность доводить рабочие части измерительного инструмента до необходимых значений нанесением хрома без дальнейшей обработки. Толщина покрытия при мерном хромировании обычно составляет 25 мк, при износе инструмента в процессе эксплуатации до 1-2 мк толщины слоя, оставшийся хром с поверхности снимают, инструмент заново подвергают хромированию.

Для мерного хромирования используется электролит с содержанием хромового ангидрида 150 г/л, серной кислоты 1,5 г/л. и следующими режимами хромирования – температура 55-600С, катодная плотность тока 45-100 а/дм2, напряжение 12 в.

Процесс проводится следующим образом – детали на подвесках помещают в доведенный до нужной температуры электролит и прогревают без подключения тока в течении 1-2 минут, затем подключается обратный ток той же плотности, как и прямой на 30 секунд, затем начинают прямой процесс хромирования. Длительность хромирования определяется опытным путем.

На рабочих участках инструмента, по окончанию хромирования не допускается наличие даже небольших наростов хрома и непокрытых участков.

Мерное хромирование применяется при изготовлении шаблонов, калибров и другого претензионного измерительного инструмента.

Сфера применения хромирования

Полностью описать все области и сферы, где используется технология, сложно. Хромирование незаменимо в мебельной промышленности, хромом обрабатывают фурнитуру, отделочные элементы. Методика популярна в производстве сантехники — элемент наносят на внешнюю и внутреннюю поверхность труб, ванн, раковин, используют для покрытия ручек, смесителей.

В автомобильной промышленности технология применяется для изготовления:

  • накладок и отражателей;
  • алюминиевых дисков;
  • элементов кузова;
  • поршней;
  • компрессионных колец;
  • роликов и осей.

Хромирование применяется при выпуске резины, пластмассы (хром наносят на каландровые валы и пресс-формы), разного измерительного инструмента. Материалом покрывают те элементы, которые сильно трутся между собой, чтобы повысить их износостойкость.

Пористое хромирование

Пористое хромирование применяют к деталям, работающим в сопряжениях, поверхность детали после нанесения такого покрытия значительно лучше обычной удерживает смазочный материал. Обычно этому виду обработки подвергают одну из трущихся деталей, при этом значительно возрастают антифрикционные свойства, улучшается приработка деталей. Различают два вида пористости – канальчатую и точечную. Получают пористую хромовую поверхность путем применения обратного тока (анодированное покрытие), обычно непосредственно в той же ванне, в которой проходило хромирование. Используется электролит стандартного состава.

Технология получения точечного пористого покрытия выглядит следующим образом: изделия погружают в гальваническую ванну, подают обратный ток и в течении 30 секунд удерживают катодную плотность тока 55 а/дм2, затем снижают плотность тока до 35 а/дм2. Продолжительность обработки данным способом зависит от толщины покрытия (например при толщине 40 мк процесс длится 10 минут. Канальчатая пористость получается при повышенной до 650С температуре, соотношение содержания ангидрида к кислоте должна составлять 115 к 1. По окончании процесса изделия извлекают из ванны и сушат при температуре 150-1800С в течение 1,5-2 часов для удаления водорода.

Где проводят хромирование?

Большинство технологий хромирования являются сложными операциями, для проведения которых необходимо специальное оборудование. Во время нанесения покрытия в атмосферу могут выделяться вредоносные вещества, которые представляют опасность для человека при вдыхании. Небольшие дозы испарений слабо влияют на здоровье, однако покрытие наносится долго, поэтому о защите организма необходимо подумать в обязательном порядке. Обычно хромовое покрытие наносят в специальных технологических цехах, где установлено оборудование для удаления вредных испарений, а сами людям носят защитные костюмы.

Однако при соблюдении ряда правил можно выполнить хромирование в домашних условиях. Для проведения работ Вам понадобятся дополнительные средства и оборудование. Перечислим основные из них:

  • Средства индивидуальной защиты. Это плотный защитный костюм, маска-респиратор и очки, которые плотно прилегают к лицу. Эти средства будут защищать тело от контакта с вредоносными веществами, которые находятся в воздуха. Защищается как кожа, так и слизистые оболочки, а также органы дыхания. После нанесения покрытия костюм, маску и очки нужно почистить, чтобы удалить частички вредных веществ, которые могли осесть на них.
  • Вытяжное оборудование. Это могут быть вытяжные вентиляторы или схожее оборудование. Главная задача, которую выполняют такие вентиляторы, — это сбор и удаление из помещения вредных испарений, которые образуются во время хромирования. Мощность таких вентиляторов не должна быть слишком высокой, поскольку вредных веществ образуется не так много (за исключением обработки больших изделий сложной формы, когда требуется большое количество расходных материалов, выделяющих вредные испарения).

Холодное хромирование

Данный вид покрытия хромом используется в случаях, если отсутствует возможность нагрева электролита. При комнатной температуре состав электролита должен содержать 250 г/л хромового ангидрида, 7-10 г/л сернокислого хрома, 3 мл/л борофтористоводородной кислоты. Катодная плотность тока в процессе – 4-5 а/дм2. Электролит для холодного хромирования имеет высокую рассеивающую способность, но малую стойкость. Осаждение хрома происходит медленно. Получать таким способом покрытия с толщиной более 20 мк не рекомендуется.

Комбинированное хромирование

При комбинированном хромировании покрытие обладает свойствами молочного хрома – покрытие с высокими антикоррозионными свойствами и блестящего хрома – минимальная пористость. Проводится комбинированное хромирование в двух ваннах, в первой по режиму молочного хромирования (Т=700С, плотность тока 30 а/дм2) и во второй ванне, в которую изделия помещаются без промывки, по режиму блестящего хромирования (Т=500С, катодная плотность тока 40-50 а/дм2). При комбинированном хромировании толщина слоя молочного хрома 15-20 мк, блестящего – 35 мк.

Хромирование алюминия

Хромирование алюминия и его сплавов применяется для повышения износостойкости деталей и придания им защитно-декоративных свойств. Процесс хромирования алюминия проводится в обычном электролите по режиму блестящего хромирования. Основной задачей для получения качественного покрытия на алюминии является комплекс подготовительных операций по удалению окисных пленок и повышению прочности сцепления покрытия с основным металлом. Осаждать хром можно непосредственно на поверхности алюминиевой детали или на предварительно нанесенном никелевом подслое. Толщина покрытий может варьироваться в широких пределах – от 0,5 до 80 мк.

Химическое хромирование

Химическое хромирование представляет интерес прежде всего тем, что в отличии от электролитического метода химическим путем несложно получить равномерный слой хрома даже на деталях сложной конфигурации. Поверхность изделия перед химическим нанесением хрома обрабатывается аналогично, как и при гальваническим. В результате получается пластичное, обладающее высокими адгезионными свойствами покрытие светло-серого цвета. Декоративные свойства химического покрытия низкие, получить блестящую поверхность можно только после механической полировки детали.

Черное хромирование

Черное хромирование применяется для формирования защитных слоев на деталях, которые должны обладать хорошей теплоотдачей (например, радиаторы) и оптических систем. Черный хромовый слой отличается достаточно небольшой толщиной – 1,5 – 2 мкм. Для защиты металлов от коррозии слой черного хрома комбинируют с молочным. Если деталь изготовлена из цветного металла – толщина подслоя должна составлять не менее 3 – 6 мкм. А если же из черного – не менее 9 мкм.

Черное хромовое покрытие отличается повышенной износостойкостью (в отличие от покрытий, полученных в результате оксидирования или черного никелирования). Оно также обладает хорошей термостойкостью и сохраняет свои свойства до температуры 773К.

Черное хромирование может проводиться в нескольких электролитах. Результат будет равноценным (свойства осажденного гальванического хромового слоя не будут отличаться). Выбор состава электролита диктуется только наличием необходимых материалов.

Финишная обработка изделий

Обработку изделий после покрытия хромом проводят следующим образом: по окончании процесса изделия извлекают из ванны хромирования и промывают в холодной, а затем в горячей воде. Нормализацию проводят в 3% растворе соды, затем опять промывают и сушат. Детали, предназначенные для работы под воздействием больших нагрузок или в агрессивной среде, дополнительно прогревают в течение 1,5 – 2 часов при температуре 150-2000С для удаления водорода, что способствует повышению прочности хромового покрытия и увеличивают прочность сцепления хрома с основным металлом. Изделия, покрытые хромом с декоративными целями нагреву не подлежат.

В случае необходимости изделия проходят дополнительную механическую обработку – полирование.

Удаление некачественного покрытия

Удалить некачественный хром можно двумя способами. Первый – химическое растворение, проводится в 50% растворе серной кислоты. Изделия помещают в емкость с серной кислотой и выдерживают до полного растворения покрытия. Второй – способ анодного растворения, проводится в гальванической ванне. Изделия, погружаются в ванну с 20%-ным раствором едкого натра и подключаются в качестве анода, в качестве катода используются стальные листы или детали. Процесс проходит при температуре 70-800С и анодной плотности тока 20-25 а/дм2 до полного растворения хрома. Перед повторным хромированием, изделия прогревают в течение 1,5 часов при температуре 150-2000С для удаления водорода.

Необходимое оборудование

Инструменты и оборудование:

  1. Источник постоянного тока с возможностью регулировки выходного напряжения. Обработку деталей малого размера допустимо проводить при использовании зарядного устройства для мобильных телефонов.
  2. Гальваническая ванна. Должна изготавливаться из термоустойчивого пластика или стекла. Главное условие — устойчивость к высоким температурам.
  3. Термометр — необходим для контроля температуры при проведении рабочего процесса.
  4. Нагревательный элемент. Лучший вариант — тэн из керамики. Нагреватель должен выдерживать длительное воздействие кислот.

Для обработки нужно устанавливать не менее двух гальванических ванн, чтобы постоянно не менять реактивы в одной емкости.


Гальваническая ванна (Фото: Instagram / galvaprom)

Основные проблемы при хромировании и методы их решения

  1. Отсутствие покрытия на углубленных участках изделия – возникает из-за низкой плотности тока в углубленных местах, избытке серной кислоты в составе электролита.

Решение: использовать фигурные аноды, начало процесса хромирования (1-2 минуты) проводить при вдвое повышенной плотности тока – дать толчок тока, снизить содержание серной кислоты – добавить в электролит воды или хромового ангидрида.

  1. Покрытие матовое или пригорелое (обычно на выступающих частях изделий) – возникает из-за высокой плотности тока при данной температуре, пассивирования анодов или недостаточного прогрева деталей перед процессом.

Решение: корректировать соотношение плотности тока и температуры, увеличить расстояние между анодами и катодами, очистить аноды, контролировать прогрев деталей перед погружением в ванну хромирования.

  1. Темные разводы, полосы, точки на поверхности изделий – недостаточная концентрация в растворе электролита серной кислоты

Решение: добавить в раствор серной кислоты.

  1. Темный цвет покрытия – высокое содержание трехвалентного хрома, недостаток кислоты, низкая температура электролита в процессе хромирования.

Решение: кроме прогрева электролита и добавления серной кислоты следует проработать электролит током.

  1. Покрытие отслаивается – некачественное обезжиривание поверхности изделия, резкое повышение плотности тока при снижении температуры.

Решение: откорректировать температурный режим хромирования, улучшить подготовку поверхности изделия.

  1. Зернистость или вздутия – наличие в электролите твердых частиц и (или) некачественная подготовка изделия к гальванической обработке.

Решение: фильтрация электролита и контроль качества подготовки деталей.

Механизм гальванического хромирования.

2.1 Катодные реакции.

Механизм электроосаждения хрома очень сложен. Во время хромирования на катоде одновременно протекают процессы:

  • осаждения хрома;
  • выделения водорода;
  • восстановления шестивалентного хрома до трехвалентного;
  • образования на поверхности катода тонкой пленки, состоящей из продуктов восстановления хромовой кислоты и активного аниона.

Установлено, что электролит должен содержать определенное количество активных анионов, без которых металлический хром не выделяется вообще.

Максимальное значение выхода хрома по току достигается при строго определенном соотношении между концентрацией Н2Сr2O7 и постороннего аниона.

Схематичное изображение катодных поляризационных кривых при хромировании приведено на рисунке 1. Без добавки посторонних анионов, например, сульфатов, характер кривой плавный (1), так как на электроде во всем интервале плотностей тока выделяется водород. При введении в электролит серной кислоты форма кривой усложняется (2).

Рисунок 1 — Схематическое изображение катодных поляризационных кривых при хромировании.

Так, в присутствии сульфат-анионов кривая состоит из двух ветвей, отличающихся характером электродных реакций. При этом на участке ab

происходит восстановление шестивалентного хрома до трехвалентного, на участке
cd
протекают одновременно три процесса — восстановление шестивалентного хрома до металла, восстановление шестивалентного хрома до трехвалентного и восстановление ионов водорода.

Анионы-активаторы изменяют поверхностное состояние катода и таким образом влияют на электродные процессы. В области кривой ab

поверхность становится более активной, а в области
cd
наблюдается торможение реакции восстановления. Пассивность катода связана с появлением на поверхности электрода пленки из продуктов электролиза, которая лимитирует протекание одних реакций и способствует протеканию других. Обильность образования водорода объясняется низким перенапряжением его выделения на хроме.

Рассмотрим основные процессы в механизме хромирования более подробно: а.

Выделение газообразного водорода:

2H3O+ + 2e ↔ H2 + 2H2O , E0 = 0,0 B

б.

Принятие электронов шестивалентным хромом с получением двух- и трехвалентных катионов с последующим осаждением металлического хрома:

Cr2O72- + 7H2O + 6e ↔ 2Cr3+ + 14OH-, E0 = +1,33 B; Cr2O72- + 7H2O + 12e ↔ 2Cr0 + 14OH- , E0 = +0,40 B; Cr3+ + e ↔ Cr2+ , E0 = -0,41 B; Cr3+ + 3e ↔ Cr0 , E0 = -0,74 B; Cr2+ + 2e ↔ Cr0 , E0 = -0,91 B.

Прежде всего должно происходить частичное восстановление шестивалентного хрома до трехвалентного состояния, совместно возможно протекание процессов восстановления ионов водорода и ионов хрома до металлического состояния. Что касается двухвалентного хрома, то наличие этих ионов в свободном состоянии в хромовой кислоте — сильном окислителе, маловероятно.

Исследователи, касающиеся вопросов восстановления шестивалентного хрома до металла, придерживаются двух основных взглядов:

  • Первые допускают возможность ступенчатого восстановления шестивалентного хрома до металла.
  • Вторые считают возможным непосредственное восстановление шестивалентных ионов хрома до металла.

Все исследователи согласны с тем, что на катоде при хромировании образуется особая пленка сложного состава, если покрываемая основа склонна к пассивации.

в.

Синтез сложной двухслойной пленки.

Тонкий внутренний слой этой пленки аналогичен пассивным слоям (0,0001 мм), а внешний включает в себя хром в различных валентных состояниях и ионы-активаторы (до 0,025 мм). Общий состав и структура катодной пленки зависят от состава и структуры покрываемой основы. Например, на меди катодная пленка вообще не образуется, т.к. медь легко растворяется в электролите, а на железе и никеле она особенно выражена ввиду усиленной пассивации этих металлов хромовой кислотой. Катодная пленка имеет коллоидную природу, состав ее может меняться при изменении плотности тока и температуры электролита. В целом она может содержать: до 67 % шестивалентного хрома, до 23 % трехвалентного хрома, до 12% сульфат-ионов. Толщина пленки увеличивается с увеличением концентрации постороннего аниона. От свойств пленки зависит структура покрытия, а от структуры — его свойства. Именно на этом этапе формируются механические и химические отличия различных осадков хрома. Так, например, структура катодной пленки при низких плотностях тока и высокой температуре создает благоприятные условия для получения молочного хрома.

Детально механизм воздействия посторонних анионов на процесс хромирования не выяснен. Существуют две гипотезы, объясняющие их влияние:

  • По первой из них анионы являются активаторами, вызывающими активацию катодной поверхности. В отсутствие этих ионов поверхность покрывается соединениями Сr3+, что препятствует полному восстановлению Н2Сr2О7 и осаждению на катоде металлического хрома.
  • По второй гипотезе посторонние анионы образуют с Н2Сr2О7 реакционные комплексы, обладающие большей способностью к восстановлению последней.

На основании ряда исследований с использованием радиоактивного изотопа Cr3+ был сделан вывод, что электроосаждение хрома происходит из его шестивалентных ионов. При этом установили, что при наличии в электролите Cr3+ в виде его трехвалентных соединений осадок получался нерадиоактивным. Уже отмечалось, что из растворов coлей трехвалентного хрома качественных осадков получить не удается. Boзможно, что в электрическом поле у катода такие анионы, как Cr2O72- и Cr2O42-, деформируются, поворачиваясь своим положительным ядром к катоду. При достаточно большом потенциале Cr(VI) может быть вырван из аниона с переходом в металлическую решетку. Скорость этой электрохимической реакции определяется перенапряжением и концентрацией CrO42- у поверхности катода. Рассматривая структуру Cr2O72-, не трудно заметить, что деформация их ионов и вырывание Cr(VI) должны быть затруднены. Поэтому вполне возможно, что первым процессом, идущим при низких плотностях тока, является восстановление анионов Cr2O72- до Cr3+-ионов с одновременным подщелачиванием растворов. По достижении предельного тока для разряда Cr2O72- начинается выделение водорода, в таком случае имеет место дальнейшее подщелачивание раствора. В результате этого рН католита достигает 5-7, и тогда у катода начинают преобладать ионы CrO42-, которые, деформируясь, могут восстанавливаться как частично, так и полностью:

CrO42- + 3e + 4 H2O = Cr(OH)3 + 5OH- CrO42- + 6e + 4 H2O = Cr0 + 8OH-

Роль SO42-, вероятно, сводится к растворению гидроокиси хрома или других коллоидных соединений, создаваемых трехвалентным хромом, т.к. они могут образовывать растворимый комплекс Cr4(SO4)4(H2O)2+. В катодном процессе ионы SO42- не участвуют, т.к. непосредственные измерения показывают, что их концентрация в прикатодном пространстве в процессе электролиза не меняется. Большое количество ионов SO42- ухудшает ocаждение, так как при этом, видимо, CrO42- могут вытесняться ими с поверхности, и выхoд по току снижается.

2.2 Анодные реакции на нерастворимых анодах.

При хромировании деталей применяют нерастворимые аноды. Это объясняется тем, что хром растворяется на аноде с бОльшим выходом по току, чем осаждается на катоде, и переходит в раствор в виде ионов разной валентности.

Анодные реакции при хромировании с участием нерастворимых свинцовых анодов следующие:

Pb + SO42- — 2e = PbSO4, E0 = +0,356 B ; Pb + 4H2O — 4e = PbO2 + 4H+, E0 = +0,665 B ; H2O — 2e = ½O2 + 2H+, E0 = +1,228 В ; PbSO4 + 2H2O — 2e = PbO2 + SO42- + 4H+, E0 = +1,185 B ; 2Cr3+ — 6e + 7H2O = Cr2O72- + 14H+, E0 = +1,300 B .

В процессе электролиза аноды покрываются слоем оксида свинца (IV) РbО2, который является катализатором процесса Сr3+ → Cr6+ и защищает аноды от разрушения. При определенном соотношении анодной и катодной плотностей тока можно установить равновесие, при котором на аноде будет окисляться такое же количество трехвалентного хрома, какое попадает в электролит из катодной зоны.

Контроль качества хромовых покрытий

Для определения толщины слоя хромового покрытия используют стандартные химические или физические методы контроля. Качество покрытия оценивают прежде всего визуально – покрытие должно быть ровным и гладким, без наростов и прогара.

Данная обзорная статья предназначена для ознакомления заказчика с процессом хромирования и помощи в принятии решения о нанесении на свои изделия того или иного типа покрытия. Администрация благодарит технолога участка гальваники Скворцова С. И. за предоставленные знания.

Возможно Вас заинтересуют статьи:

  • Хромирование автомобильных дисков

    В статье подробно описан процесс хромирования автомобильных дисков и других автозапчастей своими руками в гаражной мастерской. Приведен состав…

  • Серебрение в домашних условиях

    Серебрение — это процесс нанесения тонкого серебряного слоя на поверхность обрабатываемого изделия. Серебряное покрытие обладает высокими…

  • Гальваника в домашних условиях

    В зависимости от требований, предъявляемых к покрываемым изделиям различают три вида гальванических покрытий – защитно-декоративные покрытия,…

  • Никелирование

    Никелирование изделий из любых марок сталей, алюминиевых сплавов и титана. Многослойные декоративные и функциональные покрытия. Электрохимическая…

Технология хромирования

Существуют разные способы хромирования, некоторые вполне можно применять в домашних условиях, имея соответствующее оборудование.

Гальванический метод хромирования

Гальваническое хромирование деталей — самый популярный метод, ведь все действия можно осуществить своими руками. Гальваника предполагает помещение деталей в специальный раствор с определенным составом, откуда под воздействием волн (солитонов) электрического тока атомы хрома будут осаждаться на поверхность. Имея нужный набор приспособлений для хромирования, можно самостоятельно создать высококачественное покрытие путем гальванизации.

Электролитический метод хромирования

Одна из разновидностей гальваники. При использовании электролиза трех- или шестивалентный хром придает изделию нужный «металлический» вид. При применении трехвалентного элемента основным веществом раствора выступает хромовый ангидрид. Использование шестивалентного хрома отличается от предыдущего метода наличием в составе раствора сульфата хрома.

При проведении электролитического хромирования дисков или иных деталей важно строго соблюдать пропорции компонентов. В противном случае защитный слой быстро отслоится либо на нем будут пятна, неодинаковая матовость и недостаточный глянец.

Диффузионный метод хромирования

Напыление хрома производится при помощи гальванической кисти. В домашних условиях такой метод более предпочтителен, ведь мастеру не потребуется использовать ванну. Особенно рекомендуется выполнять методику для деталей из алюминия, углеродистой стали, сплавов с кремнием.

Химическое хромирование

Применение химических реактивов помогает восстановить хром из его солей. В случае использования химии электрический ток не потребуется. Обычно в качестве реагентов берут соединения фосфора, лимоннокислый натрий, уксусную ледяную кислоту, едкий натр 20 %.

Перед нанесением реагентов детали покрывают слоем меди. После окончания работ промывают заготовки в воде, сушат, полируют (изначально предметы имеют тусклый серый цвет).

Каталитический метод хромирования

Подвид химического хромирования черных или цветных металлов, предполагающий нанесение на деталь жидкости без кислот в составе. Технология безопасна для человека и помогает создать оригинальные, необычные эффекты.

Каталитическое хромирование можно применять в отношении обычных и гибких изделий (при электролизе последнее невозможно, покрытие отслоится).

Обычно в качестве реагента берется серебро в щелочном растворе аммиака, а как восстановитель — формалин или гидразин. Применение серебра делает деталь молочной с зеркальной поверхностью.

Вакуумное хромирование

Технология принадлежит к химической металлизации и имеет еще одно название — PVD-процесс. Дает конденсацию паров хрома на поверхности детали после помещения ее в специальную вакуумную камеру. В этой установке при отрицательном давлении хром нагревается до температуры испарения, потом оседая как туман на изделии.

Расчет давления, срока хромирования будет зависеть от степени износа детали, вида материала. После вакуумного хромирования толщина металлического слоя минимальная, поэтому деталь сверху покрывают специальной краской из баллончика или лакируют.

Термохимическое хромирование

Применяют средства в порошках, состоящие из шамота, феррохрома. Методика аналогична таковой при химическом хромировании, только изделие в процессе будет подвергаться нагреванию.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]