Что такое ржавчина и как с ней бороться: оксиды железа


Цвет ржавчины
Ржавчина

— является общим термином для определения оксидов железа. В разговорной речи это слово применяется к красным оксидам, образующимся в ходе реакции железа с кислородом в присутствии воды или влажного воздуха. Есть и другие формы ржавчины, например, продукт, образующийся в ходе реакции железа с хлором при отсутствии кислорода. Такое вещество образуется, в частности, в арматуре, используемой в подводных бетонных столбах, и называют его
зелёной ржавчиной
. Несколько видов коррозии различимы зрительно или с помощью спектроскопии, они образуются при разных внешних условиях. Ржавчина состоит из гидратированного оксида железа (III) Fe2O3·nH2O и метагидроксида железа (FeO(OH), Fe(OH)3). При наличии кислорода, воды и достаточного времени любая масса железа в конечном итоге преобразуется полностью в ржавчину и разрушается. Поверхность ржавчины не создаёт защиту для нижележащего железа, в отличие от образования патины на медной поверхности.

Ржавчиной, как правило, называют продукт коррозии только железа и его сплавов, таких как сталь. Многие другие металлы тоже подвергаются коррозии, но именно оксиды железа обычно называют ржавчиной.

Химические основы процесса коррозии железа

Железо является химически активным металлом. Оно в присутствии кислорода и воды подвергается окислению, при этом образуя разнообразные соединения: оксиды, гидроксиды, гидраты оксидов. Химки констатируют, что определенной формулы ржавчины нет. Что такое ржавчина? Это коррозия, которая образуется вследствие окисления железа. Она обладает переменным составом, который зависит от окружающей среды.

Ржавчина поражает железо по его всей поверхности. Однако самыми уязвимыми являются внутренние и внешние узлы изделий, сварочные швы, резьбовые соединения. Структуры ржавого железа отличаются значительной степенью рыхлости. У ржавчины отсутствует какое-либо сцепление с металлом. Вследствие того, что поверхность высокопористой коррозии свободно удерживает в себе атмосферную влагу, создаются оптимальные условия для дальнейшего разрушения железа.

Обычно цвет ржавчины — красно-бурый, коричневый, который не позволяет оценить состояние железа под слоем коррозии. Под ржавчиной металл может быть окончательно разрушен. Если не принимать меры для предотвращения ее распространения, то результаты воздействия коррозии на железо могут оказаться катастрофическими, привести к полному разрушению конструкций. Это особенно опасно, если ржавчина разъела опоры ЛЭП или дно морского судна. Что такое ржавчина для автомобиля, и какой вред она несет, известно каждому автомобилисту.

Экономический эффект

Ржавчина вызывает деградацию изделий и конструкций, изготовленных из материалов на основе железа. Поскольку ржавчина имеет гораздо больший объём, чем исходное железо, её нарост ведёт к быстрому разрушению конструкции, усиливая коррозию на прилегающих к нему участках — явление, называемое поеданием ржавчиной

. Это явление стало причиной разрушения моста через реку Мианус (штат Коннектикут, США) в 1983 году, когда подшипники подъёмного механизма полностью проржавели изнутри. В результате этот механизм зацепил за угол одной из дорожных плит и сдвинул её с опор. Ржавчина была также главной причиной разрушения Серебряного моста в Западной Вирджинии в 1967 году, когда стальной висячий мост рухнул меньше, чем за минуту. Погибли 46 водителей и пассажиров, находившихся в то время на мосту.


Мост Кинзу после разрушения.
Мост Кинзу в штате Пенсильвания был снесён смерчем в 2003 году в значительной степени потому, что центральные опорные болты, соединяющие сооружение с землёй, проржавели, из-за чего мост держался лишь под действием силы тяжести.

Кроме того, коррозия покрытых бетоном стали и железа может вызвать раскалывание бетона, что создает серьёзные конструкторские трудности. Это один из наиболее распространённых отказов железобетонных мостов.

Причины появления ржавчины

Ржавчина начинает появляться тогда, когда металл контактирует с кислородом, водой, окислителями либо кислотами. Одним из условий того, что металл подвергается ржавчине, является наличие в нем примесей либо добавок. Если имеет место контакт железа с внешними раздражителями в присутствии соли (соленая вода), то коррозия разрушает его значительно быстрее в виду начала электрохимических реакций.

Если железо является чистым, без примесей, то оно к воздействиям кислорода и воды значительно устойчивее. Так же, как и у них металлов, таких как алюминий, на его поверхности образуется плотное оксидное покрытие (слой пассивации), который обеспечивает защиту основной массы железа от более глубокого окисления. Однако и этот слой может быть разрушен, если начинается взаимодействие железа с кислородом и водой совместно.

Иными факторами, которые активно разрушают железо, являются углекислый газ в воде и серный диоксид. При их воздействии очень активно образуются разнообразные типы гидроксида железа. Они, в отличие от оксидов железа, не могут защитить металл. Гидроксид, формируясь, начинает отслаиваться от поверхности железа, после чего негативному воздействию подвергается нижний слой, который также отслаивается. И этот процесс длится до того времени, пока весь металл не будет уничтожен, либо в окружающей среде не останется кислорода, диоксида углерода, серы и воды.

Если железо, подвергаясь сгоранию на воздухе, контактирует с кислородом, то имеет место образование оксида железа ii.

При сгорании в чистом кислороде — оксид IV.

Оксид железа iii образуется тогда, когда через металл, находящийся в расплавленном состоянии, проходит воздух или кислород.

Предотвращение ржавления


Отслаивающаяся краска обнажает участки ржавой поверхности листового металла.
Ржавчина является проницаемой для воздуха и воды, поэтому внутрилежащее железо продолжает разъедаться. Предотвращение ржавчины, следовательно, требует покрытия, которое исключает образование ржавчины. На поверхности нержавеющей стали образуется пассивирующий слой оксида хрома (III). Подобное проявление пассивации происходит с магнием, титаном, цинком, оксидом цинка, алюминием, полианилином и другими электропроводящими полимерами.

Гальванизация

Хорошим подходом к предотвращению ржавчины является метод гальванизации, который обычно заключается в нанесении на защищаемый объект слоя цинка либо методом горячего цинкования, либо методом гальванотехники. Цинк традиционно используется, потому что он достаточно дёшев, обладает хорошей адгезией к стали и обеспечивает катодную защиту на стальную поверхность в случае повреждения цинкового слоя. В более агрессивных средах (таких, как солёная вода), предпочтительнее кадмий. Гальванизация часто не попадает на швы, отверстия и стыки, через которые наносилось покрытие. В этих случаях покрытие обеспечивает катодную защиту металла, где оно выступает в роли гальванического анода, на который прежде всего и воздействует коррозия. В более современные покрытия добавляют алюминий, новый материал называется цинк-алюм

. Алюминий в покрытии мигрирует, покрывая царапины и, таким образом, обеспечивая более длительную защиту. Этот метод основан на применении оксидов алюминия и цинка, защищающих царапины на поверхности, в отличие от процесса оксидизации, как в случае применения гальванического анода. В некоторых случаях при очень агрессивных средах или длительных сроках эксплуатации применяются одновременно и гальванизация цинком, и другие защитные покрытия, чтобы обеспечить надёжную защиту от коррозии.

Катодная защита

Катодная защита является методом, используемым для предотвращения коррозии в скрытых под землёй или под водой структурах путём подачи электрического заряда, который подавляет электрохимические реакции. Если её правильно применять, коррозия может быть остановлена полностью. В своей простейшей форме это достигается путём соединения защищаемого объекта с протекторным анодом, в результате чего на поверхности железа или стали происходит только катодный процесс. Протекторный анод должен быть сделан из металла с более отрицательным электродным потенциалом, чем железо или сталь, обычно это цинк, алюминий или магний.

Лакокрасочные и другие защитные покрытия

От ржавчины можно предохранять с помощью лакокрасочных и других защитных покрытий, которые изолируют железо из окружающей среды. Большие поверхности, поделённые на секции, как например, корпуса судов и современных автомобилей, часто покрывают продуктами на основе воска. Такие средства обработки содержат также ингибиторы коррозии. Покрытие стальной арматуры бетоном (железобетон) обеспечивает некоторую защиту стали в среде с высоким pH. Однако коррозия стали в бетоне всё ещё является проблемой.

Покрытие слоем металла


Ржавчина может полностью разрушить железо. Обратите внимание на гальванизацию незаржавевших участков.

  • Оцинковка (оцинкованное железо/сталь): железо или сталь покрываются слоем цинка. Может использоваться метод горячего цинкования или метод цинкового дутья.
  • Лужение: мягкая листовая сталь покрывается слоем олова. В настоящее время практически не используется из-за высокой стоимости олова.
  • Хромирование: тонкий слой хрома наносится электролитическим способом на сталь, обеспечивая как защиту от коррозии, так и яркий, полированный внешний вид. Часто используется в блестящих компонентах велосипедов, мотоциклов и автомобилей.

Воронение

Воронение — это способ, который может обеспечить ограниченную устойчивость к коррозии для мелких предметов из стали, таких как огнестрельное оружие и др. Способ состоит в получении на поверхности углеродистой или низколегированной стали или чугуна слоя окислов железа толщиной 1-10 мкм. Для придания блеска, а также для улучшения защитных свойств окисной плёнки, её пропитывают минеральным или растительным маслом.

Снижение влажности

Ржавчины можно избежать, снижая влажность окружающего железо воздуха. Этого можно добиться, например, с помощью силикагеля.

Ингибиторы

Ингибиторы коррозии, как, например, газообразные или летучие ингибиторы, можно использовать для предотвращения коррозии в закрытых системах. Некоторые ингибиторы коррозии чрезвычайно ядовиты. Одним из лучших ингибиторов выступают соли технециевой кислоты.

Состав ржавчины

Ржавчина, которая образуется в обычных условиях, является как правило смесью 3 оксидов железа. Они образуются не в один момент и имеют разные физико-механические свойства. Железные оксиды с самого нижнего слоя по направлению к поверхности представляют собой сочетание следующих составляющих:

  1. Вюстит (оксид железа) — мягкая структура, зависящая от условий, в которых находится металл. Если температура хранение высокая, то этот слой наибольший.
  2. магнетит (магнитный железняк) – окись-закись железа, обладающая более высокой пористостью, чем вюстидный слой, и меньшей твердостью. Это структура имеет выраженные магнитные свойства.
  3. Гематит (красный железняк) – обычно это структура красно-серого цвета, твердое абразивное вещество. Гематит обладает более высокой плотностью, разъедает металл и увеличивает коэффициент трения при соприкосновении с поверхностями.

Перед тем, как заняться работами по ликвидации ржавчины, необходимо узнать состав металла, особенно на его поверхности, а также установить условия, которые способствовали ее появлению. Располагая такой информацией, достаточно просто найти оптимальный вариант для удаления оксида железа и выбрать наиболее эффективные средства для борьбы с ржавчиной.

Средства для удаления ржавчины

Сегодня не редко встречается специальная краска по ржавчине. Она представлена на отечественном рынке большим количеством марок. Ее достоинством является то, что, она дает достаточно плотное покрытие. Она обладает тройным действием.

Она сочетает в себе функции:

  • преобразователя ржавчины,
  • грунтовки,
  • красящего вещества с высоким уровнем плотности.

Она не только устраняет следы ржавчины, но и делает покрытие более ровным и привлекательным. Краски для работы с ржавыми предметами обладают высоким уровнем насыщенности цвета, чтобы даже в один слой скрывались все следы наличия ржавого налета. При этом на металле образуется небольшой слой пленки, который не дает ржавчине и дальне распространяться и развиваться новой.

Классификация способов борьбы с коррозией

С учетом основных составляющих коррозии, способы, как вывести ржавчину, делятся на следующие:

  • Механический — ликвидация оксидного слоя осуществляется посредством жестких металлических щеток, наждачной бумаги и т. п.
  • Тепловой — осуществляется посредством воздействия на коррозию высоких температур, обычно в сочетании с водяным и (или) воздушным потоками.
  • химический — удаление оксидов железа осуществляется вследствие воздействия на них специальными средствами, растворяющими ржавчину, при нанесении их на поверхность металла.

Необходимо учитывать, что эффективность вышеуказанных методов различна. Так, если процесс образования коррозии установлен своевременно, и это небольшое пятно, то поверхность железа можно эффективно обработать стальной щеткой, наждачный крупнозернистой бумагой, угловой шлифовальной машиной с соответствующей насадкой.

Однако если установлено, что ржавчина захватила большие поверхности, то тогда оптимальными методами будут химические.

Если площади ржавого металла очень большие, их невозможно транспортировать, то тогда оптимальным считается тепловая обработка, но она связана с высокой трудоемкостью.

Обычно обработка металла для удаления ржавчины осуществляется комбинированными способами, при которых различные методы применяют в определенной последовательности.

Механические способы

Выбор определенного способа механической обработки зависит от вида поверхности железа. Так для мотков стальной проволоки применяют ее перематывание с одного носителя на другой. В этом случае при перегибах ржавчина отделяется от поверхности металла.

При удалении коррозии механическим способом обычно используют жесткие щетки из стальной щетины или наждачную бумагу (крупнозернистую).

К недостаткам механических способов избавления от ржавчины относится тот факт, что на поверхности железа остаются следы, образованные очистительным инструментом. Поэтому рекомендуется поверхность очищенного железа подвергать полировке для придания ей прежнего внешнего вида.

Тепловая очистка

Для удаления ржавчины тепловыми методами необходимы специальные установки (промышленные парогенераторы либо строительные фены). Способ очистки от оксидов железа основан на том, что контакт ржавчины с основным металлом не прочен. Воздействие повышенной температуры и горячей влаги при большом скоростном воздушном потоке такое, что ржавчина удаляется практически полностью.

Наиболее эффективен этот метод тогда, когда на обрабатываемую поверхность подается и горячий пар. Паровоздушная смесь в струе, которая подается на металлическую поверхность под давлением, приводит к размягчению ржавчины, дроблению на отдельные фрагменты, которые удаляются с поверхности железа воздушным потоком.

Эти методы особенно эффективны, когда необходимо удалить ржавчину со стальных дверей, вентиляционных конструкций, металлических структур, демонтировать которые невозможно либо затруднительно.

Химическая очистка

В настоящее время методы химической очистки металлических поверхностей от ржавчины очень разнообразны. Однако у всех в основе лежит один процесс — удаление коррозии посредством химического воздействия на нее растворами кислот.

К наиболее эффективным способам избавления от окислов железа относят воздействие на ржавчину соляной кислотой, особенно когда ее концентрация в растворе составляет не менее 15%. Если концентрация меньше, то растворение ржавчины существенно замедляется.

Кислотные составы, сделанные на основе серной кислоты, применять не следует, так как в результате воздействия на поверхности железа образуется слой гидридов, которые повышают хрупкость металла.

Если необходимо осуществить химическую очистку металла в домашних условиях, то возможно применение неагрессивных веществ, таких как лимон, уксус и т.п. Принцип воздействия на коррозию такой же. Эти вещества достаточно хорошо растворяют ржавчину, которая потом легко удаляется ветошью. Что такое ржавчина и как ее удалить, вероятно, знает большинство домохозяек.

Коррозия в жидкостях-неэлектролитах

К неэлектропроводным жидким средам (т.е. жидкостям-неэлектролитам) относят такие органические вещества, как:

  • бензол;
  • хлороформ;
  • спирты;
  • тетрахлорид углерода;
  • фенол;
  • нефть;
  • бензин;
  • керосин и т.д.

Кроме того, к жидкостям-неэлектролитам причисляют небольшое количество неорганических жидкостей, таких как жидкий бром и расплавленная сера.

При этом нужно заметить, что органические растворители сами по себе не вступают в реакцию с металлами, однако, при наличии небольшого объема примесей возникает интенсивный процесс взаимодействия.

Увеличивают скорость коррозии находящиеся в нефти серосодержащие элементы. Также, усиливают коррозийные процессы высокие температуры и присутствие в жидкости кислорода. Влага интенсифицирует развитие коррозии в соответствии с электромеханическим принципом.

Еще один фактор быстрого развития коррозии — жидкий бром. При нормальных температурах он особенно разрушительно воздействует на высокоуглеродистые стали, алюминий и титан. Менее существенно влияние брома на железо и никель. Самую большую устойчивость к жидкому брому показывают свинец, серебро, тантал и платина.

Расплавленная сера вступает в агрессивную реакцию почти со всеми металлами, в первую очередь со свинцом, оловом и медью. На углеродистые марки стали и титан сера влияет меньше и почти совсем разрушает алюминий.

Защитные мероприятия для металлоконструкций, находящихся в неэлектропроводных жидких средах, проводят добавлением устойчивым к конкретной среде металлов (например, сталей с высоким содержанием хрома). Также, применяются особые защитные покрытия (например, в среде, где содержится много серы, используют алюминиевые покрытия).

Применение иного оборудования для удаления коррозии металла

Механические методы борьбы со ржавчиной возможно использовать далеко не всегда, особенно если металлические изделия имеют сложные формы.

Химические методы имеют также определенные недостатки. Если не соблюдать технику безопасности, то можно получить химический ожог либо отравление. Есть сложности с утилизацией отработанных растворов.

Вследствие этого наиболее оптимальным является применение способа так называемого мягкого бластинга. Его принцип состоит в том, что на поверхность металла, поврежденного ржавчиной, направляется струя сжатого воздуха, которая содержит в себе абразивные составляющие.

Изменяя давление в струе, можно регулировать глубину слоя, который снимается. Это приводит к тому, что удаляется только ржавчина, тогда как сам металл остается сохранным. Гранулы, которые действуют на коррозию, состоят из мелкодисперсной соды и мела, можно применять и очень мелкий песок.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]